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Abstract

Emerging technologies enable a set of distributed ressuaceoss a network to
be linked together and used in a coordinated fashion to soparticular parallel ap-
plication at the same time. Such applications are ofterratisid as directed acyclic
graphs (DAGS), in which vertices represent applicatioksamd edges represent data
dependencies between tasks. Effective scheduling mesharior DAG applications
are essential to exploit the tremendous potential of coatfmurtal resources. The core
issues are that the availability and performance of regssehich are already by their
nature heterogeneous, can be expected todwamamically even during the course of
an execution. In this thesis, we first consider the problersabfeduling DAG task
graphs onto heterogeneous resources with changeableiltggmb/Ne propose a list-
scheduling heuristic approach, the Global Task Positp@i P scheduling method,
which addresses the problem by allowing rescheduling amgtation of tasks in re-
sponse to significant variations in resource charactesistiVe observed from experi-
ments withGT Pthat in an execution with relatively frequent migrationyiay be that,
over time, the results of some task have been copied to deikea sites, and so a sub-
sequent migrated task may haseveral possible sourcésr each of its inputs. Some
of these copies may now be more quickly accessible than thmal, due to dynamic
variations in communication capabilities. To exploit thisservation, we extended our
model with aCopying Managemenr(CM) function, resulting in a new version, the
Global Task Positioning with copying facilitie&{ P/c) system. The idea is to reuse
such copies, in subsequent migration of placed tasks, ierdodreduce the impact of
migration cost on makespan. Finally, we believe that faalktrince is an important
issue in heterogeneous and dynamic computational enveatsras the availability
of resources cannot be guaranteed. To address the problproadssor failure, we
propose a rewinding mechanism which rewinds the progresheofpplication to a
previous state, thereby preserving the execution in spitlesofailed processor(s). We
evaluate our mechanisms through simulation, since trosvalk to generate repeatable
patterns of resource performance variation. We use a stdbéachmark set of DAGS,
comparing performance against that of competing algostinom the scheduling lit-
erature.
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Chapter 1
Introduction

Emerging computational platforms enable a set of hetereges and non-dedicated
resources distributed across a network to be linked togette used in a coordinated
fashion to solve a particular problem at the same time. Wesiden the problem of
scheduling parallel applications, represented by diceatyclic graphs (DAGS), onto
heterogeneous and shared computational resources, in ahaggninimises the re-
sulting schedule length (makespan) of the application. ddre issues are that the
availability and performance of the resources, which areaaly by their nature hetero-
geneous, can be expected to vdyynamically even during the course of an execution.
This thesis is motivated by the fact that the DAG scheduliraplem is NP-complete
in its general forms. A vast number of heuristics have beapgsed in the litera-
ture. However, most of the heuristics were designed for hggneous environments
composed by processors with the same computational cépebilSome heuristics
were designed for heterogeneous environments composetbbggsors with differ-
ent computational capabilities, but assuming that sucllwéipes are dedicated and
unchanging over time. New efforts are required to develdpedaling mechanisms
to address the heterogeneous and dynamic nature of emeyigibgl computational

platforms.

1.1 Contribution

In this research, we place strong emphasis in four key aspetiich we believe are
central when designing mapping methods for heterogenewdislgnamic distributed
computing systems: reactivity, data-aware components, lansfer flow and fault
tolerance. The contributions of this work are summarizefbbgws:
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1. We propose a list-scheduling heuristic approach, théb&ldask Positioning
GTP mapping method, which addresses the DAG scheduling profidernet-
erogeneous and dynamic computational environments witiichccuse of a
static mapping method. The ter@lobal denotes the coordinated collabora-
tive environment of resources located potentially at glaisale, made possible
by advances in network technology. Our method allows retdiveg and mi-
gration of tasks when this helps to minimize makespan. TaiLesach reschedul-
ing point the objective is to obtain an improved task schedwhich minimises
the anticipated makespan, considering the current stdtustl application and
computational resources.

2. We observed from experiments wiBil P that due to their task migration pol-
icy, the results of some tasks may have been copied to sesbel sites, and
SO a subsequent migrated task may have several possibleesdor each of
its inputs. Some of these copies may now be more quickly addeshan the
original, due to dynamic variations in communication cdliiéds. To exploit
this observation, we extended t&d P model by including a Copying Manage-
ment function, resulting in th&T P/c model. We demonstrate that reusing such
copies will help to reduce the impact of migration on makespg avoiding
unnecessary data transfer between tasks.

3. The relationship between the DAG application (defined gy awner of the
DAG) and the mapping method (defined by the owner of the métiwdot
fully explored. Most mapping methods focus on schedulingtsgies which use
the shape and static information of the DAG, just as a referdn map tasks
onto processors. They do not consider the mechanism thnwbgin communi-
cation of task results is actually achieved. We have fouatlignoring this issue
may negatively affect the performance of the applicatior.dlserved two main
models to allow the transfer of data among tasksR&H modeand thePULL
model In the PUSH model as soon as a task finishes execution, theefatlts
are pushed to its successors for execution. In the PULL mdueidata results
are pulled from predecessors as soon as a task is mapped dicalpaproces-
sor. We conducted some experiments in which we show thatriberfiakespan
of the application can be affected depending on the datafesmmodel used to
execute the DAG application.

4. Fault tolerance is an important issue in computationgirenments where re-



1.2. Outline of the dissertation 3

sources are heterogeneous, non-dedicated and distrjlagede availability of
processors cannot be guaranteed. Effective DAG schedualgthods must in-
clude fault tolerant mechanisms to preserve the execufitdmeapplication, de-
spite the presence of a processor failure. To address thiprepose a rewinding
mechanism, an event-driven process executed when a faldegdected at some
rescheduling point. The rewinding mechanism seeks to presbe execution
of the application by recomputing and migrating those taghksh will disrupt
the forward execution of succeeding tasks. The mechanisinds the progress
of the application to a previous state, thereby preseniiegeixecution despite
the failed processor(s).

1.2 Outline of the dissertation

This dissertation is structured as follows. Chapter 2 piesia review of relevant lit-
erature about the DAG scheduling problem. We describe thimehts and evolution
of the DAG scheduling problem from homogeneous environsiemeémerging global
computational environments composed by heterogeneous@mdedicated compu-
tational resources. In Chapter 3, we present@ieP reactive method for scheduling
DAG applications on heterogeneous resources with chateeapabilities over time.
Then, we present th&T P/c reactive method, in which re-use of information is in-
troduced, to improve the utilization of the computationedaurces and to minimize
the impact of the migration cost on the application makesparally, we propose the
rewinding mechanism to preserve the execution of the agijdic despite the presence
of processor failure, increasing the reliability of our @ynic scheduling methodaT P
andGT P/c. The evaluation of our reactive mapping methods is conduioyesimu-
lation, since this allows us to generate repeatable pattefmesource performance
variation. In Chapter 4 we describe all the elements coathin the simulation frame-
work in which we conduct our experiments. We describe thecsoand characteristics
of the input task graphs used in the evaluation. Then, werithesihe distinctive char-
acteristics of our scenarios under which the mapping methoglevaluated. At the end
of this chapter, we describe the adaptive version of the Bthsgftware, which allows
us to manage dynamic events in simulating variations in gr®opmance of resources.
In Chapter 5 we present the assessment of our experimestdtse By using de-
fined metrics, we use tHeEF T static method an®LS/sr, an adaptive version of the
dynamic level scheduling (DLS) static method for heter@gers and dynamic com-



4 Chapter 1. Introduction

putational environments, to benchmark and evaluate tHenpeance of our proposed
scheduling method&TP and GTP/c In the same manner, we include the rewind-
ing mechanism into our scheduling methdal$ PandGT P/c, and based on defined
metrics, we evaluate their performance. Finally, Chaptdis6usses future work and
concludes the dissertation.



Chapter 2

Review of Literature

Grid computing is an emerging technology distinguishedriggrating large-scale,
geographically distributed and heterogeneous compuiati@sources with different
administrative domains. Although this is a relatively slenponcept, achieving it has
been a major challenge in Computer Science. Our researdhiveasrbeen inspired by
Grid systems [(Schopf, 2004), (Foster et al., 2001), (Fadtal., 2002), (Foster et al.,
2003b), (Foster et al., 2003a)]. However, it should be ntitatithere are many practi-
cal obstacles which would make it difficult to apply our workedtly to real, current
Grid systems, including the independence of local scheslulbe problems (or even
impossibility) of trying to arrange co-scheduling acrossmins and other administra-
tive matters. Thus, while we hope that our more abstracttesuay be of interest to
Grid-like systems of the future, we expect that they may bmofe immediate inter-
est to the more open, heterogeneous distributed systentstdgavithin organizations
and their related domains.

Our research work focuses on the scheduling mechanismsitessithe DAG schedul-
ing problem on heterogeneous and dynamic distributed camgpaystems. The core
issues are that the availability and performance of regssehich are already by their
nature heterogeneous, can be expected to vary dynamieay during the course
of an execution. Since this scheduling problem is NP-cotegleits general forms
[ (Gary and Johnson, 1979), (Papadimitriou and Steigl@88)], a number of heuris-
tics have been proposed in the literature. However, mosbagpes were designed for
homogeneous environments, assuming that the process@shesame capabilities
[ (Kwok and Ahmad, 1999a), (McCreary et al., 1994)]. Somesptpproaches were
designed for particular heterogeneous environmentsnasguthat heterogeneous re-
sources are dedicated and unchanged over time [(Topcl2@f)@), (Shi and Dongarra,

5
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2006), (Sih and Lee, 1993)]. In this chapter we make a liteeateview embracing the
different elements involving the DAG scheduling problemne SYart this chapter by giv-
ing a brief overview of heterogeneous computing. Next weedles the task schedul-
ing process on heterogeneous and dynamic distributed domgpaystems, followed
by the different scheduling architectures observed initeedture. Then, we describe
the different parallel application classes that we can finthe literature and we con-
tinue by reviewing a pair of issues needed to address the @A€&dalling problem on
heterogeneous resources with changeable capabilitetask mapping strategies and
the mapping method operation mode. We continue by explgargcular issues re-
lated to dynamic heterogeneous environments, such asderlance and data-aware
scheduling, to introduce part of our research work. We fitlishichapter by describing
some simulation toolkits from the literature, to build aedttmapping methods.

2.1 Heterogeneous Computing

Initially, homogeneous computational environments,(parallel computers) were dis-
tinguished by the capability to execute multiple tasks irapj@l on dedicated proces-
sors with the same capabilities connected by local intareotion networks. This al-
lowed the creation of problem partitioning techniques tlvesdarge problems, which
usually did not fit on a single processor or could not be soimedreasonable time. We
will refer to such partitioned problems as parallel appgimas. The objective of paral-
lel computing was to exploit the parallelism of the compigiaal platform to execute
parallel applications, which could help to solve large peofs in reasonable time. To
achieve this, two major problems had to be addressed: thedircerns partitioning
the problem into a set of smaller tasks and the second conteenmechanism used
to schedule the tasks onto processors [(Bokhari, 198 pk&Gand Polychronopoulos,
1987)].

Heterogeneous computing is a natural result of the advanaestwork technology,
in which it became possible for distributed computers wiffedent capabilities to ef-
ficiently communicate and therefore collaborate to solvelpel applications at the
same time. Heterogeneous computing can be seen as a speciabff parallel and
distributed computing. Parallel computing on homogenezsronments is distin-
guished by containing all the elements required by the [m@pbplication at a single
machine or parallel computer. In heterogenous computiatfgrins, the elements
required by the parallel application are dispersed amosgiduted resources. Un-
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like other distributed applications, heterogeneous camguequires, in a coordinated
fashion, direct access to the main components (i.e., cpa, deemory, etc.) of the
computational resources to solve the parallel application

Heterogeneous Computing
Systems

Dedicated Heterogeneous Shared Heterogeneous
Computing Systems Computing Systems

Figure 2.1: Heterogeneous Computing Systems

As shown in Figure 2.1, we identify two classes of HeterogeiseComputing Sys-
tems (HCS): dedicated heterogeneous computing systemSfpeind shared hetero-
geneous computing systems (SHCS). DHCS describes heterage systems where
resources are tightly controlled, and may therefore beadéed to a particular ap-
plication. Parallel machines, clusters or networks of vgtakions with the ability to
provide dedicated, exclusive scheduling illustrate théss. SHCS describes hetero-
geneous systems in which there is weaker, less restrictil@se coordinated control
and resources may therefore be shared with other unknowlicappns. For exam-
ple, networks of workstations without access control, oeraiatively, collections of
more widely distributed systems with their own globallyéoassible local scheduling
policies fall into this category. We focus on the challen§saheduling DAG appli-
cations on SHCS systems, dealing with the definition andldpwgent of mapping
mechanisms which must consider the resulting dynamic eaifithe heterogeneous
resources.

2.2 Scheduling DAGs on SHCS

A key challenge in SHCS, is to define the scheduling mechanitiat enable a set
of heterogeneous resources with changeable capabiltressa network to be linked
together and used in a coordinated fashion to solve a pkatiparallel application.
Due to the dynamically shared nature of SHCS resources,réigi2 distinguishes
two classes of scheduling approachesapplication levelscheduling and gesource
levelscheduling Application levelscheduling is also known in the literature as global
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scheduling [(Casavant and Kuhl, 1988)] or meta-schedu(i@gdWay, 2002)]. Re-
source levescheduling is referred to as local scheduling [(Casavaditarnl, 1988)].
Our research work concerns an application level schedwdmd) we will refer to it
during this work as global scheduling.

Scheduling Classes in Shared
Heterogeneous Computing Systems

Resource Level Application Level
Figure 2.2: Scheduling Classes in SHCS

Global scheduling can be defined as the process of makinglsithg decisions

over distributed resources with different and changeabagabilities over time. There
are a pair of challenges that global scheduling mechanisuass face:heterogeneitpf
resources, which results in different capabilities fokktpsocessing and théynamic
nature of resources which may vary their performance (i.e., abdityg and band-
width) over time, even during the execution of a particulpplecation. Variations in
the availability of processors may come from the autononprotessors to follow lo-
cal policies and competition by other applications for tgses. Variations in network
bandwidth may come from the traffic on network links. Thuseeive mapping meth-
ods for SHCS must include mechanisms to address the dynaticenof resources
and local schedulers.
The global scheduling process consists of several stepgiove The first three steps
are required to map tasks onto heterogeneous resourcesfoditile step concerns a
time dimension, in which the first three steps are iteratetegponse to significant
variations in resource characteristics (see Figure 3.1).

1. Resource Pool Definitiors the process of collecting (discovering) information
concerning the resources available at some point of tinferriration is a critical
resource, and gathering this information is a vital activin the literature, we
can find monitoring tools used in the grid context, such as\ievork Weather
Service [(NWS, 2002)] or Globus Monitoring and Discoverysg&m [(MDS,
2000)].

2. Task Mapping Strategieaim to assign the tasks onto selected candidate re-
sources according to some objective function. To achieig the current up-
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dated information about both the progress of the applioaitd the performance
of resources must be available. This step is highly depdang®n the details of
the scheduling method used.

3. Task Execution Procegswhich the tasks are submitted to the selected candidate
resources to be executed.

4. Reactivityconcerns the dynamic nature of resources , expressing #tefaean
iterative use of the first three steps to adapt the applicatioghe dynamic nature
of the computational platform.

2.3 The Scheduling Architectures

As shown in Figure 2.3, scheduling architectures can beified into a three category
taxonomy: centralized, hierarchical and decentralized.

Scheduling Architectures

Centralized Hierarchical Decentralized

Figure 2.3: Taxonomy of the Scheduling Architectures

1. A centralizedmechanism involves one centralized scheduler in the exeatat
the application [(Pegasus, 2003)]. The scheduler mamtdithe dynamic infor-
mation concerning both the progress of the applicatiorkgtand data transfers)
and the performance of computational resources. As we wthitlin the next
chapter, our proposed model (see Figure 3.1) is based oagpreach [(Hernan-
dez and Cole, 2007a)]. We note that by maintaining completsviedge about
the application, itis possible to design and include commglietary modules (i.e.,
fault tolerant mechanisms) to support the endeavor of thedider [(Hernandez
and Cole, 2007b)].

2. A hierarchicalmechanism is composed of a central scheduler interactitiy wi
multiple lower-level schedulers. The central schedulezsponsible for control-
ling the execution of the application and assigning a pontitthe application to
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each of the lower-level schedulers [(Thanalapati and Dianudia, 2001), (Senger
et al., 2006), (Cao et al., 2003)].

3. A decentralizeadnechanism allows the tasks composing the parallel apitat
to be scheduled by multiple schedulers. Thus, each schedidmtains the
information relating to the set of tasks assigned to it. T¢teeduling decisions
are made by each scheduler over a portion of the applicafiRemjganathan and
Foster, 2004), (Lima et al., 1999), (Arora et al., 2002)].

2.4 Applications Class Taxonomy

Parallel applications, as shown in Figure 2.4, can be reptes by two main classes:
the first class consists of independent tasks and the setassbonsists of task graphs,
for which two main sub-groups are distinguished: paralpgilecations represented by
directed acyclic graphs (DAGs) and other graphs which mayain cycles and/or be
undirected, we will refer to such graphs as Non-DAGs. Theedaling mechanism
will be highly dependent on the class of the application.

Application Class

N

Independent Tasks Task Graph

Non-DAG DAG

Task Interaction Iterative Task
Graph (TIG) Graph (ITG)

Figure 2.4: Applications Class Taxonomy

2.4.1 Independent Tasks

Parallel applications in this category, are partitioneld ia relatively large number of
mutually independent tasks. This means that they can bai@dm any order. Ap-

plications such as master-slave [(Beaumont et al., 2005hmmeter sweep [(Buyya
et al., 2005)] are part of this category. In the literature vam find a vast number
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of strategies to schedule applications composed of indkpenasks onto processors.
Next, we describe some of the well known strategies for thiegory [(Xhafa and
Barolli, 2007), (Braun et al., 2001)].

MET (Minimum Execution Time) [(Amstrong et al., 1998)] is alsndwn in the lit-
erature as LBA(Limited Base Assignment). It assigns eask ta the proces-
sor which allow the smallest execution time for the task.sThiethod is moti-
vated by giving each task the most suitable processor, iiggatis availability.
In dynamic heterogeneous environments where resourceshared and non-
dedicated, this method could lead to load imbalance amamgepsors.

MCT (Minimum Completion Time) [(Freund et al., 1998)] assignsisk to the pro-
cessor which allows the minimum completion time. To achiéig it must con-
sider the availability of processors to compute the esthabmpletion time.

OLB (Opportunistic Load Balancing ) [(Freund et al., 1998)]igiss a task to the
processor having the earliest idle machine without comsigdethe execution
time of the task on that processor. The notion behind thihotkts that it tries
to keep the processors as loaded as possible. Since thisargilks not consider
the execution times, it can affect the performance of theiegupon.

Min-Min [(Amstrong et al., 1998), (Braun et al., 2001), (Ibarra anchK1977)] con-
sists of two steps. In the first step, it computes the MCT véduesach task
on each available processor for it. In the second step, tfw@itim selects the
task with the minimum MCT value and assigns it to the corresiitg proces-
sor. This is done iteratively until all the tasks have bedredaled. Intuitively, at
each iteration, the makespan increases the least possitulgdr tasks first), ex-
pecting to obtain a reduced final makespan. However, it i€fiettive in terms
of exploiting the concurrency. For instance, by executing the shorter tasks,
there could be longer tasks which will wait until all the steortasks scheduled
firstin the processor, finish execution, even if there is bhaoprocessor available
with no more tasks to execute.

Max-Min [(Amstrong et al., 1998), (Braun et al., 2001), (Ibarra andhK1977)]
is similar to the Min-Min algorithm in the first step. In thecamd step, the
difference is that Max-Min will select the task with the maxim MCT value
and assign it to the corresponding processor. In the samaenathis is done
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until all the tasks have been allocated. Intuitively, byeaxreng longer tasks first,
there could be shorter tasks which can be executed contiyrvath longer tasks

on other resources, exploiting more effectively the coreney and expecting to
be reflected in better performance.

Sufferage [(Maheswaran et al., 1999)] is based on the idea that bet@pimngs can
be generated by assigning a processor to a task that woufdr’'smost in terms
of expected completion time if that particular processeorasassigned to it. The
sufferage value for each task is defined as the differencedaet its second-best
MCT and the best MCT. Thus, a task having a relatively higliesafe value
suggests that if it is not assigned to the processor withélseMCT, it may have
a bad performance, as the second-best MCT value is far frerhegbt MCT.

C—0 G O ¢

i |
O o

b) Directed Acyclic Graph (DAG) c) Iterative Task Graph (ITG)

Figure 2.5: Task Graphs

2.4.2 Task Graphs

In this class, we can distinguish a pair of groups: The DAGgrand Non-DAG graph.

2.4.2.1 The Directed Acyclic Graph (DAG)

Applications in this category can be abstracted by direeteytlic graphs (DAGS),
in which vertices represent application tasks and edge®sept data dependencies
between tasks (see Figure 2.5(b)). In the literature we gah di vast number of
scheduling algorithms to schedule DAGs onto processorg oHjective of such al-
gorithms is to map tasks to processors in a way which minigise resulting sched-
ule length (makespan) while satisfying the task precedencstraints. Since this
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problem is NP-complete, a number of heuristics have beepgsed in the literature
[(Kwok and Ahmad, 1999a)]. In the literature, [(Kwok and Aad) 1999a)] presents
a taxonomy of DAG scheduling algorithms grouping commoruaggions consid-
ered in the algorithms such as the task graph structure, atatipn costs, data trans-
fer costs, task duplication, number of processors and atiiwvity among processors.
However the algorithms considered are mainly designed émndgeneous environ-
ments. [(Casavant and Kuhl, 1988)] presents a hierarchas@nomy for heuristics
scheduling methods in general-purpose distributed coimgsystems. By combin-
ing hierarchical characteristics with more general flatrabteristics, it differentiates
a wide range of scheduling algorithms. Other taxonomieskmafound in [(Braun
et al., 1998), (Yu and Buyya, 2005)].Although the DAG scHedpproblem has been
explored by many researchers, most of the algorithms wesigded for homogeneous
environments, assuming that the processors have the sgmbilitzes [(Kwok and
Ahmad, 1999a), (McCreary et al., 1994)]. Some other algorg were designed for
particular heterogeneous environments, assuming thatdggneous resources with
different capabilities are dedicated and unchanged ower [{Topcuoglu, 2002), (Shi
and Dongarra, 2006), (Sih and Lee, 1993)]. Few algorithnmshz found address-
ing the characteristics of heterogeneous resources withggable capabilities [(Zhao
and Sakellariou, 2004b), (Hernandez and Cole, 2007a),Ifizeeet al., 2003)]. In
Section 2.5, we describe a taxonomy for task mapping siegegldressing the DAG
scheduling problem.

2.4.2.2 Non-DAG Graph

Applications in this category are represented by non-tie@cyclic graphs (Non-
DAGS). In the literature we can distinguish a pair of difierelasses of Non-DAG
applications: The first class is based on Tlask Interaction Graphs (TIG$jHui and
Chanson, 1997)], an undirected graph as shown in Figura)2\elere edges represent
interactions between tasks. A TIG was conceived as a graplitides a program into
maximal sequential regions connected by undirected edgistote the interaction be-
tween tasks. In [(Bokhari, 1981), (Hui and Chanson, 19%£)jeduling algorithms are
proposed to schedule TIGs onto resources. The objectiveeaf¢heduling algorithms
is to minimize the maximum processor workload, which is dedifor each processor
as the total cost due to computation and communication dhaltasks mapped to it.
The second class is based on lieeative Task Graphs (ITGsysed in many scientific
problems, which capture the pattern of recurrency at batk gand application level,
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as shown in Figure 2.5(c). An ITG can be directed or undickct€he problem of
scheduling ITGs is also known as loop scheduling. In [(Pa®88), (Yang and Fu,
1997), (Gasperoni and Schwiegelshohn, 1992)] can be focimedsiling mechanisms
for ITGs.

2.5 Task Mapping Heuristic Strategies

The task scheduling problem is in its general form NP-comepkberefore it is not pos-
sible to find an optimal solution in polynomial-time unléd3s= NP [(Kwok and Ah-
mad, 1999a), (Kwok and Ahmad, 1997)]. Aptimalassignment denotes that based
on some objective function, the mapping method obtains #s¢ $olution (schedule)
for the problem [(Papadimitriou and Steiglitz, 1998)]. hetliterature, there are only
three special cases for which it is possible to obtain annggdtsolution in polyno-
mial time. The first case is related to scheduling tree-ttined task graphs with
uniform computation costs on an arbitrary number of prooesf{Hu, 1961)]. The
second case is related to scheduling arbitrary task grajthswwiform computation
costs on a two-processor system [(Coffman and Graham, L9TBg third case in-
volves scheduling an interval-ordered task graph withamif node weights to an ar-
bitrary number of processors [(Papadimitriou and Yannaka®79)]. In all cases the
communication cost among tasks is ignored. Since any deetbbmalisation of the
scheduling problem is NP-complete, some researchers totfisding suboptimal so-
lutions (heuristicg to address the intractability of the problem, which usgpalbtain a
good solution in an acceptably short time. Heuristics casd®n as informed meth-
ods, which exploit efficiently the knowledge about the siyste obtain a solution. In
the literature, most of the mapping methods have been deséltor homogeneous
computing environments (HCE) [(Kwok and Ahmad, 1999a),r&Seulis and Yang,
1993)]. However, these approaches are not easily appdicalbleterogeneous environ-
ments, which initially were DHCS, as they do not include naubms to properly map
tasks on heterogeneous resources. Thus, most of the stigedpproaches for het-
erogeneous computing systems were developed for DHCStkdtbommon assump-
tions that heterogeneous resources are dedicated andngmataver time [(Ercego-
vac, 1998), (Leangsuksun and Potter, 1993), (Eshaghiamand 997), (Eshaghian,
1993), (Yang et al., 1993)]. As shown in Figure 2.6, hewsstian be grouped in four
main categories: approximate, clustering, task duphbcetind list scheduling.
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Task Mapping Strategies

Approximate Clustering Data List
Replication Scheduling

Figure 2.6: Taxonomy of Task Mapping Strategies

1. Approximatealgorithms usually search for a solution which is not theropt,
but it is considered to be near the optimal value in the sohdipace. They are
also known as iterative algorithms, because they usuafijoex (iterate) several
candidate solutions in the solution-space before findingtasfactory solution
according to some objective function. Depending on thedizlee problem, the
process to obtain a satisfactory solution may take a corettketime [(Sait and
Youssef, 1999), (Abraham et al., 2000), (Nath, 1997), (8poet al., 2003)].

2. List schedulinghased algorithms basically consist of two phases: takk pri-
oritization phase in which a rank (priority) is assigned to each task) st if
we construct an ordered list of tasks in decreasing orderiofity, then we ob-
tain a predicted sequence of tasks execution. Cemelidate processor selection
phasein which each task in the sequence will be assigned onto tloaepsor
which optimizes a predefined cost function (i.e., the estrlimish time). The
notion behind the approach is that the tasks with higheripyiwill be executed
first, expecting to improve the performance. These algorgiiend to perform
local optimization by assigning one after another each tagk the suitable
resources which minimizes some objective function. Tyibicéhe task priori-
tization process is based on static information about tipdicgtion (weights of
nodes and edges). A pair of well known attributes are useeéttthe task pri-
orities, thet-level (top level) attribute andb-level (bottom level) [(Adam et al.,
1974b), (Gerasoulis and Yang, 1992)]. TiHevelof a nodey; is defined as the
length of a longest path from an entry nodevtdexcludingv;). The length of a
path is determined by the sum of all the node and edge weigkéx(tion and
communication costs) along the path. Toxevelof a nodey; is defined as the
the length of a longest path fromto an exit node. Theritical path of a DAG
is the longest path in the DAG. The nature of thievelandt-level attributes
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allows identification of the nodes on the critical path(shisTcan be done by
computing for each task, the static attrib@® = t-level+ b-level then those
tasks on the critical path(s) will have the highest value &f The algorithms
in this category tend to provide good solutions (quality diedules) in a short
time [(Kwok and Ahmad, 1999b)]. The dynamic models proposedur re-
search work are based on this category of heuristics. Nextaseribe some of
the well known list scheduling algorithms.

e TheDynamic Level Scheduling (DL&Igorithm [(Sih and Lee, 1993)] was

proposed for both homogeneous and heterogeneous envinbniie DLS
algorithm for homogeneous environments, determines siedaorities by
computing a dynamic attribute callegnamic level (DL)TheDL of a task-
processor pair is denoted B (vi, pj), and reflects how well; andp; are
matched. Thé®L is determined by two terms. The first term is the Static
Level (SL) of the task which in this case is equal to bhkevelattribute and
the termmax(t, DA(vi, pj)) which denotes the time at whioh can start
execution (ST) orpj, as it receives the last data transfer from their prede-
cessors. Thud)L is determined bysL(v;) — ST(vi, pj). At each step, the
algorithm computes thBL for each ready task on every candidate proces-
sor. The task-processor pair which gives the largest vafuelLoamong
all other pairs is selected for scheduling. This procesejeated until
all the tasks are scheduled. At this point it is assumed that@cessors
are homogeneous. Thus, the static |&9Hlv;) loses its meaning when the
processors are heterogeneous. The authors adapted thel@rBhan to
consider heterogeneous processors by modifying the defimaf DL. A
key new termA(vi, pj) = Ex (vi) — E(v, pj) is added to the expression of
DL, denoting the varying processing costs:x (v;) is the median of ex-
ecution times of; over all processors anfd x (v;, pj) denotes the cost of
executingv; on p;j. A large positiveA(v;, pj) indicates thap; executedy,
more rapidly than most processors, while a large negdtiw p;j) indi-
cates the opposite.
We notice that the DLS algorithm is one of the earliest akionis to con-
sider heterogeneous processors. Other recent algoritbnasto include
static information about the heterogeneous processors whéning the
static level attribute (i.eh-leve) [(Topcuoglu, 2002)].
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e The Earliest Start Time (ESTalgorithm was proposed for homogeneous
processors [(Graham, 1969)]. The notion behind the algorits to start
executing a task as early as possible. This version assuraesdmmu-
nication costs are zero. The algorithm maintains a list aflyetasks. At
each step, the algorithm determines the predicted staet tihthe task on
each processor. The computation of this time depends ugosvdilability
of the processors and the predicted finish time of the predecs. Then,
the task is mapped onto that processor which allows the nimmarliest
start time.

e TheEarliest Completion Time (ECBlgorithm seeks to execute a task as
soon as possible [(Wang and Cheng, 1992)]. It considers germemus
processors and assumes that communication costs are zeeacl step,
the algorithm determines the predicted completion timéneftask on each
processor. The computation of this time depends upon traigbeel start
time of the task plus the expected execution time of the taske proces-
sor. Thus, the task is mapped onto the processor which alt@vsinimum
earliest completion time.

e The Heterogeneous Earliest Finish Time (HER3Igorithm [(Topcuoglu,
2002)] is a natural evolution of theCT algorithm to heterogeneous en-
vironments, since usingCT with heterogeneous processors might lead
to poor predictions. HEFT has two major phasetask prioritizing phase
for computing the priorities of all tasks anadandidate processor selection
phasefor selecting the tasks in the order of their priorities anbesduling
each selected task onto that processor which allows thés taaHiest fin-
ish time. The major adaptation to consider heterogenecusepsors was
in thetask prioritizing phaseHEFT considers static knowledge about the
heterogeneous processors by maintaining for each taslgoimgutation
cost of the task on each heterogeneous processor. Obvioustmoge-
neous environments, the computation cost is the same fohelbroces-
sors. This knowledge is used to determine the computatiaghvef a
node, which now is part of the formula to compute the rank eftdsk. In
HEFT the computation weight of a node is approximated by Weezme of
its weights across all processors. In [(Zhao and Sakeilla@0604a)], it is
shown that there are different schemes for computing thghtgiof a task
and depending on the scheme used, the makespan of the &pplicey
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be affected.

3. Clusteringbased heuristics consist of two phases: the clusteringepimawhich
tasks are grouped into clusters and the mapping-phase chve clusters are
mapped onto processors [(Gerasoulis and Yang, 1992), $Gdia and Yang,
1993)]. The clustering-phase is as follows. Initially, ledask is considered
a cluster. Then, two clusters are merged if the merging hipsptimize an
objective function (i.e., reduce the completion time). Tiherging process con-
tinues until no more merging is possible. The notion behiredrhethod is that
by grouping tasks into the same cluster, it is possible tocedhe amount of
communication among the tasks. Thus, the tasks groupedhatsame cluster
are allocated to the same processor. An important chairsiitesf this heuristic
is that it allows scheduling decisions based on global dasea., critical path),
which it is believed could derive better solutions. Them, thapping phase will
allocate the tasks of each cluster onto the same processahd-case in which
the number of clusters created is greater than the numbepoépsors, usually
there is an extra merge process in which a further merge fenpeed with the
considered clusters [(Eshaghian and Shaaban, 1994)], Wextiscuss some of
the well known clustering algorithms.

e The Edge-Zeroing (E&lgorithm [(Sarkar, 1989)] selects clusters for merg-

ing base on the edge weights. This algorithm computeb thkevel value

for each task and creates sorted list of edges in a desceonirgof edge
weights. Thus, at each step it selects the largest edge tangrezeros the
edge weight if the completion time (CP) is not increased. e clus-
ter are merged then all the edges involving these two clsister zeroed.
The ordering of tasks within a particular cluster is basedhair b — level
value.

e The Linear Clustering (LCalgorithm [(Kim and Browne, 1988)] considers
the critical path (CP) to merge tasks into a single clustbe dlgorithm first
determines the set of tasks forming the CP, then such taska@iged into
a single cluster, zeroing all the edges and removing all ttgee incident
to the critical path (decoupling the cluster). Obviouslydscoupling the
cluster formed by the tasks in the CP, the DAG will have a new TCis
process is repeated until all the tasks are clustered.
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e The Dominant Sequence Clustering (DSfIgorithm [(Yang and Gera-
soulis, 1994)] introduces the Dominant Sequence (DS) of &DBA the
length of the critical path during the process. This meaas tihis algo-
rithm attempts to reduce the DS by clustering tasks. Ob\yoatsthe be-
ginning of the process the length of t6® is equal to the length of the DS.
Initially, the t-level attribute is computed for each task and an ordered list
of tasks in decreasing order bfevelis created. Then, for each task in the
list, the algorithm is able to distinguish those tasks whaiahpart of the DS
and those which are not. Thus, if the task selected is paheobtS then it
merges the task with one of its parents if such a merge redhedgngth
of the DS by zeroing the edge, otherwise the task is congidesea new
cluster. This means that the decisions are made based ofotied gnpact
on the expected execution time. If the task is not part of t&e hen it
merges the task with one of its parents if such a merge redheddevel
value of the task.

4. Task Duplication based heuristics (TDBynsiders the replication of tasks as
a strategy to reduce the schedule length (makespan) [(Paidou and Yan-
nakanis, 1990), (Kruatrachue and Lewis, 1988), (Bansal.e2@03), (Ahmad
and Kowk, 1998)]. The notion behind this method is to useussmidle-times to
replicate parent tasks to reduce the waiting time of depeni@aks. Basically,
the key aspect in this strategy is to identify those critizalks to replicate. A
pair of strategies can be distinguished: The first strateggiclers replication of
some parent tasks based on a particular criterion. The destoategy considers
the replication of all the possible parent tasks. Next wecdles some of the
well known task duplication algorithms.

e TheDuplication Scheduling Heuristic (DSHJgorithm [(Kruatrachue and
Lewis, 1988)] uses the idea of list scheduling algorithmshbmed with
duplication of tasks to reduce the makespan. As in list salegl algo-
rithms, it creates a task list sorted by the static attriltdevel. Then, it
selects a task from the list and it predicts the start timé&eftask on a par-
ticular processor as follows: first compute the start timéheftask on the
processor. Next, it evaluates if duplicating the predemsssan reduce the
predicted start time of the task. The duplication process to find an idle-
time slot of the processor and it will insert the duplicateeldecessor tasks
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until either such a slot is not available or the start timehaf task can not
be improved further. The process is repeated until all tskgtdave been
allocated onto processors. DSH duplicates tasks wheressage avoiding
redundant duplications, to reduce the overall commurocadelay.

TheBottom-Up Top-Down Duplication Heuristic (BTDld)gorithm [(Chung
and Ranka, 1992)] is an extension of the DSH algorithm. Thgnia-
provement is that BTDH attempts to duplicate the predecsssao the
processor assigned to their succeeding task even if thaénakeslot is filled
up and it also ignores the effect of increasing the start twhen duplicat-
ing predecessors. The notion behind the algorithm is tleestrt time may
eventually be reduced by duplicating all the necessaryquessors.

The Critical Path Fast Duplication (CPFD)(Ahmad and Kowk, 1998)] is
based on the notion that an accurate identification of th@rtapt tasks for
duplication may lead to obtain short schedules. It classifie nodes in a
DAG into three categories in the order of decreasing impmea Critical
Path Nodes(CPN), In-Branch Nodes(IBN) and Out-Branch NEBN).
The authors believe that the most important nodes are onritieatpath
(CP), as CP is the longest path of the task graph and, therefoe finish
times of CP nodes (CPNs) bound the final schedule length. Aranch
Node (IBN) is a node from which there is a path reaching a CPINOAt-
Branch Node (OBN) is considered the least important of theeespbeing
neither a CPN nor an IBN. The procedure contains three mais.fairst,
it creates a priority list called the CP-Dominant Sequerargaining in the
first instance all the tasks on the CP and all the OBNs are al@okto the
sequence respecting the precedence constraints. Secorahch task in
the list, it determines the earliest start time of the taslkeaoh candidate
processor and selects that processor which allows the mamimarliest
start time. Third, a minimization-process tries to minimthe start time
of the task by considering duplicating each possible prestsar (starting
from the predecessor whose message arrives last and so ihe) @arliest
idle-time slot of the selected processor. If duplicatingaatipular prede-
cessor is successful then the start time of the task will Haged and the
process will try to further minimize, by considering duglitng the next
predecessor. If the duplication is not successful then thmermzation-
process stops. The second and third steps continue ungl #éne no more
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tasks in the list.

These algorithms show the close relationship between tral@leapplication, tar-
get platform and scheduling mechanism. We observe thateasdmputational en-
vironment evolved from homogenous to heterogeneous anvients, which initially
were dedicated heterogenous computing systems (DHCShapping strategies were
adapted with particular mechanisms to properly achieveadbk mapping on hetero-
geneous resources.

The advent of emerging technologies such as SHCS will al@ngists and engineers
to build distributed applications to exploit resourceslabgl scale. However, the map-
ping strategies for DHCS, are not capable of addressingythardic nature of SHCS,

as they just use static information of the computationadueses to make scheduling
decisions before the execution, ignoring that resourceschange dynamically over
time. We will consider this issue in the next section.

2.6 Task Mapping Operation Modes

In Section 2.5, we described that some mapping methods ssidgethe heterogeneity
of the computational resources, are not capable of addiggsise dynamic nature of
emerging computational platforms such as SHCS, as theyrasthat resources are
dedicated and unchanging over time. In the literature, fewristic mapping methods
have been developed for SHCS [(Maheswaran and Siegel, 1@&o0 and Sakel-
lariou, 2004b), (Hernandez and Cole, 2007a), (HernanddzCate, 2007c)]. They
include particular considerations of the mode in which thapping method would
operate. As shown in Figure 2.7, the mode in which strategypimg methods are
implemented, can be classified as either static or reactodgem

1. In aStatic modeall the static information related to the application amane
putational resources is assumed to be available beforexdmiton. Thus, an
initial static schedule is generated by a particular mag@trategy, launched
to the target architecture and maintained during the exatwdf the applica-
tion. A pair of assumptions are distinguished: the first agstion is related to
the accurate knowledge about both the DAG application aaactmputational
system (i.e., task computation times, bandwidth, datarmtgrecies and commu-
nication times among tasks). The second assumption staeshe resources
are dedicated and the fluctuations in the variability of tr@ses are minimum.
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Scheduling algorithms designed fbomogeneousnvironments (e.g., parallel
computers) or some others designedieterogeneousnvironments with a tight
degree of control over resources such as DHCS, fit in this m@dewill refer
to mapping methods operating in static mode as static mgppethods.

. Reactive modis based on the notion that maintaining an initial statiesithe in

computational environments where the performance of megsumay vary over
time, even during the execution of the application, maycffiee predictions and
eventually, the performance of the application. Thus, nrapptrategies operat-
ing in reactive mode seek to incorporate dynamic informmaitido the scheduling
decisions. To achieve this, reactive approaches congtartthitor the state of
both the progress of the application and performance ofuress before tak-
ing scheduling or rescheduling decisions. We will refer tapping methods
operating in reactive mode as reactive mapping methods. ré@haive mode
can be classified into eitheeschedulingor run-time schedulingchemes. The
reschedulingscheme, is related with cyclic use of a mapping method owee.ti
The notion behind the rescheduling mechanism is to refinaidialischedule
over time, taking into account the most recent performanéarination of the
resources and the progress of the application. Based ontéean on which the
application is rescheduled, two different approaches bsewable: remapping
points and events. Remapping (or rescheduling) pointsvegttone will deter-
mine the moment at which the application must be reschedWedmportant
issue is to optimize the cost of the remapping points. Usiagyrrescheduling
points may incur in a high overhead cost, while using fewscheduling points
may result in an inadequate reaction to the problem. Ther abroach is re-
lated to rescheduling the application based on the deteofipredefined events
[(Huedo et al., 2004), (Yu and Shi, 2007), (Yu and Shi, 2004lernandez and
Cole, 2007a)] presents an approach which includes the agdeof a mapping
method with fixed-period rescheduling point. The detail8 & presented in
chapter 3.

In [(Zhao and Sakellariou, 2004b)] a rescheduling policgrisposed which at-
tempts to reschedule the application at a few selected 9duning execution,
expecting to reduce the overhead cost generated by redofgethe application.
To achieve this, the approach evaluates two different ogetthe spare time and
the slack of a node. The spare time denotes the maximal tiateatparticular
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predecessor node can execute without affecting the staetaf some of its de-
pendent nodes that are either connected by an edge in the DA adjacent
in the execution order of the assigned processor. The sliaalode is defined
as the minimum spare time on any path from this node to thenexie of the
DAG. This is the maximum delay that can be tolerated in theetten time of
the node without affecting the overall schedule length (@salan). For instance,
if the slack of a node is zero, then it means that the nodetisarand any delay
in the execution of this node will affect the makespan of theliaation.
Another approach in this category can be found in [(Spootal €2005)] where
an iterative invocation of a genetic algorithm is proposemhsidering migration
of tasks when a defined performance contract is not achieved.

Our research is focused on task mapping heuristics opgratireactive mode.
Our model allows rescheduling of an executing applicatioresponse to signif-
icant variations in resource characteristics, to effidjeakecute parallel appli-
cations on SHCS.

In therun-time schedulingrather than generating a refined schedule over time,
the mapping strategy operates in a manner that progregsigieédule blocks of
tasks over time. It uses the run-time information that beesavailable from the
execution of previous blocks of tasks to make schedulindiptiens for subse-
guent blocks of tasks. The process continues until all tbels of tasks have
been executed.

The Just In-time approacks proposed in the Pegasus project [(Deelman et al.,
2004)]. They propose to schedule all tasks at run-time,@shiecome available.
To achieve this, they designed a mechanism (the partifjdhat partitions the
abstract workflow (DAG) into smaller partial workflows. Thegkendencies be-
tween the partial workflows reflect the original dependentietween the tasks
of the abstract workflow. Once the partitioning is perform&dgasus maps
and submits the partial workflows to the dynamic system devi@!: If there is a
dependency between two partial workflows, Pegasus is magaitg¢by [(DAG-
man, 2002)]) to map the dependent workflow until the preageiorkflow has
finished executing.

Another approach is proposed in [(Maheswaran and Sieg@8)],9vhere a hy-
brid remapper is presented to dynamically schedule DAGiegipbns. It as-
sumes that an initial schedule is provided as an input. Theidhyemapper
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executes in two phases: in the first phase, prior to the exegut partitions the
DAG into blocks (the levels of the DAG) such that the subtaskhkin a block
(level) are independent. The second phase of the hybridgperaexecuted dur-
ing application run-time, involves the execution of tasksgeeding from the top
block (the highest level) to the bottom block. Thus, it udesun-time infor-
mation that becomes available from the execution of previglocks of tasks
to make scheduling predictions for subsequent blocks distand eventually
remap the remaining blocks of tasks. This approach is sirlthe just-in-time
approach, the difference is that the remapper allows theutxa of several
blocks in an overlapped fashion.

Task Mapping Operating Modes

T

Static Reactive

Rescheduling Run-time
Scheduling

Figure 2.7: Taxonomy of Task Mapping Operation Modes

2.7 Data Awareness Taxonomy

In this section we describe another dimension of the mappiathods for SHCS. It
concerns the treatment of the results of completed taskichwdan be an important
issue if the applications are large and complex. Thus, ag/sho Figure 2.8, map-
ping methods for SHCS can be classified in two main categalegs-aware and data
unaware.

The data-aware approacincludes mechanisms to consider results of completed
tasks (i.e., output files) over execution. In [(Hernandex @nle, 2007c)], th&TP/c
model is presented. This proposes the reuse of data for te@ytasks in order to re-
duce the impact of migration cost on makespan. This may legast in applications
with a relatively high number of tasks and data transfees,(data-intensive applica-
tions). Details of th&sT P/c model will be presented in chapter 3. We notice that this
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Data Consideration Mechanisms

Data Aware Data Unaware

Figure 2.8: Data Awareness Taxonomy

approach assumes data-storage of sufficient size on eacésgar to perform all the
data transfers among tasks. A complementary work can bedfouf{fRamakrishnan
et al., 2007)], which considers data-storage constraitsmnscheduling data inten-
sive applications. Their approach is two-fold: they miramihe amount of space a
workflow requires during execution by removing results ofngdeted tasks (i.e., out-
put files) at runtime when they are no longer required and sicégdule the workflows
in a way that assures that the amount of data required andajedeby the work-
flow fits onto the individual processors. Most of the apprascin the literature are
data-unawareand do not take into account data-storage constraints.

2.8 Taxonomy of Fault Tolerance Mechanisms

Although, the reactive scheduling strategies describ&krtion 2.6 react in response
to significant variations in resource characteristicsy e not necessarily able to react
to processor failure during execution. Fault tolerancenisnaportant issue in SHCS
as the availability of resources cannot be guaranteed. Sariehas been conducted
to design fault tolerant mechanisms for DAG applicatiomdd(eiros et al., 2003)] to
preserve the execution of the application despite the poesef a processor failure. In
Figure 2.9, we show a fault tolerance mechanisms taxonomylas to that proposed
in [(Hwang and Kesselman, 2003)]. Fault tolerant mechasisan be classified in
two major categories according to the level. The first catggoattask levelin which
just the knowledge about the task (i.e., processor assjgaeded to redefine just the
status of a particular failed task. The second category application levelin which
more knowledge (i.e., status of predecessors and sucsgssogquired to redefine the
whole status of the application in order to address therilu

Thetask levelcategory groups several strategies such as retry, aleeraaburce,
checkpoint/restart and task duplication. The retry apgnasimply considers a num-
ber of tries to execute the same task on the same resourcalafexting the failure
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Fault Tolerance Mechanisms

T

Task level Application level

Retry Alternate Checkpoint/  Task Rescue User—defined Rewinding
resource Restart Duplication File Exception
Handling

Figure 2.9: Fault Tolerance Mechanisms Taxonomy

[(DAGman, 2002), (Taverna, 2004)]. The checkpoint/rastgproach usually saves
the computation state over time, such that it migrates thedsaork of failed tasks
to other processors, so that the tasks can resume execuionthe failure point
[(Jalote, 1994), (Condor, 2001)]. The task duplicationrapph selects tasks for dupli-
cation, hoping that one of the replicated tasks will finisbcassfully in case of failure
[(Abawajy, 2004), (In et al., 2005)].

The application levelcategory groups several strategies: Rescue file, Redupdanc
User-defined Exception Handling and Rewinding. The resdeerfechanism is pro-
posed in [(DAGman, 2002)]. Such a mechanism consists ofdbelhmission of un-
completed portions of a DAG when one or more tasks resultélure. If any task in
the DAG fails, the remainder of the DAG is continued until nonmforward progress
can be made due to the DAG dependencies. At this point, DAGMaduces a file
called a Rescue DAG (input file), containing information abthe progress of the
DAG (unfinished and successfully finished tasks). Then,giiis Rescue DAG as in-
put file, the unfinished tasks are resubmitted. The User-ggfixception Handling is
proposed in [(Hwang and Kesselman, 2003)] to allow users/mayspecial treatment
to a specific failure of a particular task. A rewinding medcisamis proposed in [(Her-
nandez and Cole, 2007b)] to address a processor failure.réitiading mechanism
seeks to preserve the execution of the application by reatimgpand migrating those
tasks which will disrupt the forward execution of succegdiasks. The mechanism
rewinds the progress of the application to a previous sthggeby preserving the ex-
ecution despite the failed processor(s). Details of thelraeism will be presented in
Section 3.5.
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2.9 Global Scheduling Simulators

In the literature, we find simulators which allow buildingdatesting mapping methods
for distributed environments. The major objective of thenslators is to provide a
framework to model, evaluate and compare scheduling giegten a repeatable and
configurable environment.

e Simgrid[(Simgrid, 2001), (Legrand et al., 2003)] is a discreterg\a@mulation
toolkit. It provides a set of core abstractions and fundidres that can be used
to build simulators for specific application domains and/omputing environ-
ment topologies. In Simgrid, resources are modelled by tatncy and service
rate. Simgrid provides mechanisms to model performanceachexistics either
as constants or from traces. This means that the latencyeamide rate of each
resource can be modelled by a vector of time-stamped vatudsates). Traces
allow the simulation of arbitrary performance fluctuationgomputational re-
sources. The user is responsible for scheduling compuatatdod communica-
tions in the right order (in the case of DAGSs) on the right reses.

e GridSim[(GridSim, 2002)], is an object-oriented toolkit implemed in Java for
resource modelling and scheduling simulation. As Simgrig,a discrete-event
simulation toolkit, which allows us to investigate and miosigheduling mech-
anisms in SHCS. It can be used to simulate application sééedior single or
multiple administrative domains distributed computingtgyns such as clusters
and networks of workstations. GridSim simulates time anacegshared re-
sources with different capabilities, time zones and coméijons. One main dif-
ference is that GridSim incorporates economic issues, eviierimplementation
of mapping methods includes deadline and budget constramirihe scheduling
decisions.

e GangSim Simulatd(Dumitrescu and Foster, 2005)] is the result of the enhance

ment of the Ganglia Monitoring Toolkit [(Massie et al., 20P4t was designed
to support studies of scheduling strategies in grid enwvirents, which comprise
potentially large number of resources, resource ownersahehl organizations
(VOs). It allows us to model not only sites but also composeftvirtual orga-

nizations such as users and planners. GangSim mainly fotesmoring the

interactions between local and VOs resource allocatiotiesl GangSim simu-
lates a policy-driven management infrastructure in whiclgies concerning the
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allocation of resources within VOs and the allocation obreses across VOs at
individual sites interact to determine the ultimate alkbwa of individual com-
putational resources. In addition, GangSim permits paraliocessing and can
combine simulated components with instances of a Gangliaitdiong Toolkit
running on real resources.

e OptorSim Simulatof(Bell et al., 2003a)] was developed as part of the European
DataGrid project [(Project, 2004)]. OptorSim is a grid siator distinguished
by including data replication strategies. Thus, OptorSlloves to investigate
scheduling algorithms to ensure effective usage of regsuand replication al-
gorithms which involve the creation and management of dgibaas at different
sites, in order to optimize the data access time. The scimgdalgorithms are
focused on reducing the cost needed to run a job, includiagdhowing ap-
proaches: Random (a site is chosen randomly), Access Casit iecthe time
needed to access all the files needed for the job), Queue®@igei§ the number
of jobs in the queue at that site) and Queue Access Cost (thbined access
cost for every job in the queue, plus the current job). Thdéicapon algorithms
are mainly divided in three replication strategies. In thstfstrategy, the non-
replication option is available. In the second strateggvitays replicates when
a file is requested for processing, deleting existing filaseifessary. The third
strategy involves an economic model in which sites "buy” &sall” files using
an auction mechanism [(Bell et al., 2003b)] .

Other simulators include DAGsim [(Jarry et al., 2000)]dks [(Takefusa et al.,
1999)] and Microgrid [(Song et al., 2000)]. The DAGsim pidjés implemented on
top of Simgrid, and is focused to implement and evaluate DA&ppNg methods in
several simulation scenarios. The Bricks project maintuBes on simulating resource
allocation strategies and policies for global computingtegns. In the bricks context,
global computing systems are composed by client-servéesgsthat provide remote
access to scientific libraries and packages running on hggfopnance computing.
Unlike other simulators, Microgrid aims to allow grid reselaers to evaluate and ex-
ecute their applications on a virtual grid emulated envinent. Microgrid supports
the execution of applications on emulated grid resourceg;mwuse the Globus toolkit
[(Foster and Kesselman, 1997)].
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2.10 Summary

In this chapter we have presented a literature review reéltdeour research. It em-
braced the different elements involved the DAG schedulimiplem. We reviewed the
heuristic mapping strategies that can be found in the tileea Next, we described
the operation modes in which mapping strategies are impiégde being the reac-
tive mode used to address the task mapping on heterogenegdaly@amic resources.
We described particular issues related to dynamic heteemes environments, such
as fault tolerance and data-aware scheduling. We finishiedtiapter by describing
some simulation toolkits from the literature, to build aedttmapping methods.

In the work presented here, we investigate the problem addicimg DAG applications
on shared heterogeneous computing systems (SHCS), whiondaing to our classi-
fication in Figure 2.1, is an emergent class of heterogeneomgputing systems, dis-
tinguished by the heterogeneous and dynamic nature of tim@uatational resources.
Classifications in the Figures 2.2 and 2.3 indicate that Wlevioan application level
scheduling model operating under a centralized architegaheme. In terms of our
classification in Figure 2.5, we propose a reactive mappiethod, which considers
the cyclic (rescheduling) use of a mapping method over tiowe.task mapping model
is based on the list scheduling approach, one of the grouphich heuristic mapping
methods can be classified according to the taxonomy showeidime 2.6. Our inter-
est in the list scheduling approach is the evolvement psobserved in the literature
for this scheduling strategy when the computational ptatfevolves (i.e. from homo-
geneous computing systems to dedicated heterogeneousitogpystems). Thus,
with the advent of emerging technologies such as SHCS, wedb adapt this map-
ping strategy for SHCS. Additionally, list scheduling algioms usually generate good
solutions in a reasonable amount of time. Our reactive ambras based on the use of
remapping points to reschedule the application. Unlikeotbactive approaches (i.e.,
run-time scheduling), we believe that this scheme can hatipmly to react to dynamic
changes in resources, but to inaccurate predictions fravigus schedules. An ex-
tension in our proposed model is related to the data coretidermechanisms (see the
classification in Figure 2.8) into the scheduling decisitmsnprove the utilization of
resources. We consider data reuse of the results of cordpbetks over the execution
of the application, which can be an important issue if we @®ersthe data-storage
constraints. Finally, we propose a fault tolerant mechrangs the application level
(see the classification in Figure 2.9), to preserve the di@tof the DAG application,
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despite the presence of a processor failure. Unlike othdt t@lerant approaches, our
model is distinguished by considering recomputation angration of tasks which had

already finished, but which will disrupt the forward exeoutof succeeding tasks. For
instance, those preceding tasks already executed on thd fabcessor still transmit

data to succeeding tasks.



Chapter 3

The Global Task Positioning (GTP)
Models

Our research considers the problem of scheduling pargbeliGations, represented
by directed acyclic graphs (DAGs), on SHCS. The core issteethat the availability
and performance of resources, which are already by theirae&ieterogeneous, can be
expected to vary dynamically, even during the course of &e@ton. This chapter de-
scribes our proposed model to address the dynamicallydggaeous nature of SHCS.
The description is divided into three main parts. The first dafines the Global Task
Positioning (GTP) scheduling system, a list-schedulingriséc based model, which
addresses the problem by allowing rescheduling and mayrati the tasks of an exe-
cuting application, in response to significant variatianssisource characteristics. The
term Global denotes the coordinated collaborative environment ofeshaesources
potentially located at global scale, made possible by atk&im network technology.
The second part, based on observations of previous resulGTP, proposes a new
version of the model calle&T P/c, in which re-use of information is introduced, to
improve the utilization of resources and to minimize the aoiof the migration cost on
the application makespan. Finally, the third part expléhescase of extreme variation
of dynamic resources (i.e., processor failure), for situed in which the availability of
computational resources cannot be guaranteed. Effecth@ mapping methods for
SHCS must include fault tolerant mechanisms to preservexbkeution of DAG ap-
plications despite the presence of a processor failure diicess this, we designed the
rewinding mechanism, which preserves the execution of pipéiGation by recomput-
ing and migrating those tasks which will disrupt the forwasacution of succeeding
tasks.

31
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3.1 Description of the GTP Model

Our overall system is sketched in Figure 3.1, wHa@r& represents the task graph, STG
contains dynamic information concerning the progress eftésks, and SRP contains
dynamic information concerning the current performancehef shared resources in
SHCS. We will define these structures more formally durireggdbntent of this chapter.
Our model assumes that the initial task graph is given asTistructure, together
with the initial model of resources as ti&RPstructure. An initial schedule® is
generated by a standard static mapping method (e.g., HRHE).this, the initial task
graph is copied into th&T Gstructure and the initial schedule is launched to SHCS.
Our model addresses the dynamic nature of SHCS with cyatiotia mapping method
to react to dynamic changes in resources. We will refer th escle as aescheduling
point (RP). We consider a fixed frequency rescheduling cycle duexecution. The
selection of the rescheduling cycle frequency is discussesection 4.2. At each
rescheduling point the dynamic information describingphagress of the application
(tasks and data transfers) is update81nG In the same manner, the latest information
about resource performance is updatedSIRP Then, given the latest information
about both resources and application, our model generagdimad schedulg', aiming

to minimize the estimated makespan of the application.nsmers migration of tasks
when the cost of the migration itself is outweighed by thebglaime saved due to
execution at the new site. The cyclic process continues tinatiapplication finishes
execution.

3.1.1 Definition of the SHCS

To represent Shared Resource Pools (SRP) (see Figure)3&&will use graphs
SRP:: (P, L,avail.bandwidth) whereP is the set of available processors in the system,
pi(1<i<|P|). We assume data storage of sufficient size on gaehP to perform

all the data transfers among taskis.is the set of communication links connecting
pairs of distinct processors,(1 <i < |L|) such thatl (pm, pn) € L denotes an undi-
rected communication link betweegn, and p,. We assume that the intra-processor
communication costpm = pn) is negligible. We assume that the processors are fully
connected. Our dynamic scheduling decisions will be bagexh uhe latest avail-
able resource performance information (as returned bydstahGrid monitoring tools
such as NWS[(NWS, 2002)] or Globus MDS[(MDS, 2000)]). Thastimet we as-
sume knowledge oévail' :: P — [0..1], capturing the availability of each CPU and
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Figure 3.1: The Global Task Positioning (GTP) mapping method

bandwidth :: L — Float capturing the available bandwidth on each link. We note that
the models5T PandGT P/c described in Section 3.2 and Section 3.3 respectively, as-
sumejavail' > 0| in resources. The rewinding mechanism described in Se8tbad-
dresses the case of extreme variations when the variaisiktgual to zerogvail' = 0).

3.1.2 Definition of the Input Task Graph (ITG)

Static information about the DAG application (see Figu&®)) is represented by an
inputtask graph ITG: (V,E,dataW). V is the set of tasky; (1 <i < |V|). ECV xV

is the set of directed edges connecting pairs of distinétstas(1 < i < |E|), where
e(vi,Vj) € E denotes a precedence constraint and data transfer fronvtaskasky;.
An edgee(v;,Vvj) € E implies thatvj cannot start execution unti finishes and sends
its results tovj. For future convenience, we define the notaffyed(v;) to denote the
subset of tasks which directly precedeand Sucgv;) to denote the subset of tasks
which directly succeed. Those tasks; such thatPred(v;)| = 0 are called entry tasks
and|Sucdv;)| = 0 are called exit tasks. We assume that information aboattdatsfer
sizes and task computation times are provided in standatsi stompatible with those
of our bandwidth and computational performance measuresus&data::V xV —

Int to describe the size of data transfers, suchdlaé&(i, j) denotes the amount of data
to be transferred fromy; to vj. Remembering that our processors are heterogeneous,
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we represent computation times (see Figure 3.2(b)) With V x P — Int, where

W (i, m) denotes the execution time in standard units of tagln processopm,, when
working at full availability (i.e., availability 1 in termef functionavail). In practice
this information may be difficult to obtain, and concretelizsgions of such systems
may have to rely upon programmer estimates, informatiomfprevious runs and
other ad-hoc methods. For applications which are execejgeatedly, information to
initialize W could be maintained from one run to the next. We will factothia effect

of dynamically affected processor availabilities and Ibdndwidths during execution.
For future convenience, since given they will be traversed top-down fashion, we
uselLevelv;) to denote how deep in terms of number of edges, avdskrom the entry
node. In the same manner we can compute the inter-deperdédecellDL (e(v;,V;))

for a particulare(vi,vj) € E, which denotes how deep in terms of number of edges,
a tasky; is from the taskvj. We notice that the impact of the mechanism through
which communication of task results is achieved, is noyfakplored. In terms of the
communication model among tasks, we observe two main mealalfow the transfer

of data among tasks, tHeUSH modelnd thePULL model In the PUSH model,
as soon as a task finishes execution, it pushes the data testsltsuccessors to be
executed. In the PULL model, as soon as a task is mapped ortieufarprocessor,

it requests to pull the data needed from its predecessoravilMghow in Section 5.7
that ignoring this issue may negatively affect the perfaroeof the application.

3.1.3 Definition of the Situated Task Graph (STG)

Just as we maintain dynamic informatiavail and bandwidthon the SRR so we

must maintain additional dynamic information on the pregref the DAG execution.
We model this by augmenting the statitG, to form aSituated Task Graph ST.G
This includes information on current schedule of taskstiglacompletion of tasks
and partial completion of communications. This is necgssagether with monitored
information on the availability of processors and linksatlow us to iteratively com-
pute improved schedules, taking into account migratiotscasd resource availability
changes. A key new concept is that of fflaced taskA task is said to becon@aced

on a processor once it has begun to gather its input data érptbeessor. A task
which has merely been assigned to some processor by thentaateedule is said to
be non-placed The distinction is important because of its impact on ntigracosts

associated with data retransmission. The decision to neigranon-placed task will
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Figure 3.2: Example of the elements required by the GTP model

incur no migration cost because retransmission of datatiseeded.

We defineSTG:: (V,E,data,W,I'I,KCKd), where the first four components are
taken directly from the correspondin@ G. We usell ::V — PT to represent place-
ment information. P* representd augmented with the special valNMONE For
placed tasksi, (v;) indicates the corresponding processor. For non-placés t@s
M(v;) = NONE A placed task remains placed until migrated or until the lstappli-
cation terminates, because even after task completion Wkater need to retrieve (or
re-retrieve in the case of migration) its results.

We assume that information concerning the progress of ctatipns and commu-
nications is made available by monitoring mechanisms dt esscheduling point. We
usek®::V — [0..1] to capture the proportion of a task’s computation which heenb
completed, and similarlyg® :: E — [0..1] to capture the proportion of a data trans-
fer which has been completed. The init@I Gis effectively just thel TG with all
completions equal to zero and all task placements set to NONE
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3.2 The GTP Scheduling Method

Before describing the details of tk&T Pscheduling algorithm, we describe the process
of setting the tasks ranks, the migration model and the ngsti candidate schedules.

3.2.1 Setting Task Ranks

As described in Section 2.5, list-scheduling heuristicrapphes maintain a list of
unfinished tasks ordered byrank(priority), which is computed statically. Such list
denotes a predicted sequence of tasks execution. Therevarakmethods to statically
set the ranks of tasks for a heterogeneous environment [Kkamd Ahmad, 1999a)].
We useRy (Vi) (also known ableve), which is an upward rank computed from the exit
node tov; and defined as the length of the critical path frgnto an exit nodeRy(v;)

is computed recursively as,

Ru(vi) :V_VI+ma)%eSucmtvi)(dathi»Vi)‘FRU(VJ')) (3.1)

whereW is the average execution cost of taglkacross all processors and it is defined
by,

(ZPLW(\, Pm))
E

W = (3.2)
Notice that the computation weight of a node is approximéatethe average of its
weights across all processors, following the approachTdgd¢uoglu, 2002)]. There
are other schemes to approximate the weight for nodes aresesfghe task graph.
In [(Zhao and Sakellariou, 2004a)], an experimental ingeasion is conducted into
the rank function of the HEFT algorithm, the same that we nseguation 3.2. They
experiment with different schemes (e.g., mean value, waisie) for computing these
weights. They show that the predicted makespan of the sthedeated may be af-
fected significantly by the scheme used.
Thus, following the example for the DAG shown in Figure 3)2¢ae computed val-
ues ofW andR, for each task are displayed in Figure 3.2(b). For instanmetask
V2, W(V2) = (13+ 10+ 8) /3 = 10 andRy(v2) = 10+ max 7+ Ry(Ve), 11+ Ry(v7)) =
54. Once the set of rank], are computed for all tasks, then the list of unfinished
tasks ordered by, is determined. For the DAG shown in Figure 3.2(a), the list is
{Vo, Vs, V4,V1,V2,V3,Vg,Vs, V7,V }. SinceR,(Vj) is an upward rank computed from the
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exits nodes to the entry nodes and it considers the edges tothputation, for a par-
ticular precedence constraigtvi,v;), Ru(vi) > Ru(vj). Furthermore, its value remains
the same over time despite the varying status of eachPred(vi). This means that
task ranks are computed just once during the cyclic process.

An interesting issue in this section is related to the faat #nparticular task; may
be faster than some other tagkon some processqy, but slower than the same task
on another processqgy. This is related to the heterogeneity of resources in SHCS.
For example, this can be seen for the DAG shown in Figure B.R§atasksvp and
vs. One reason to explain this, is that in the real world, theeesame tasks which are
more suitable for a particular processor, for instance k iaslving data parallelism
is more suitable for vector machines, however the same testuged on network of
workstations may be not so efficient. This is reflected in th@jutation costs.

3.2.2 The Task Migration Model in GTP

A placed tasky; is migrated when it has been rescheduled onto a processartodn
M(vi). In our costings, we adopt a pessimistic model, in which therated task
must be restarted from the very beginning, including regaity all inputs from its
predecessors. This is illustrated in Figure 3.3 with a higptital case. ARR,, the
tasksv; andvo were executed gty andps respectively and task was scheduled to be
executed ap, after receiving the data required. However it has so famgrsived data
from vy1. By considering the current status of both resources anlicagipn, the model
reschedules the application anglis migrated fromp, to p2, expecting to be executed
at some point beforBR, 1. Thus, data fronPred(vz) must be totally retransmitted to
p2. At RR,;1 we have the same situation. The requirement was partidiiyiéd as
just v, successfully transmitted the needed datastoAgain, after updating both the
performance of resources and progress of tasks, the maidiedules the application
andvs is migrated back to processpi, expecting to be executed befare- 2. Now,
atn-+ 2, we observe thats is finally executed after receiving the required data from
Pred(v3). We notice that tasky sent the data twice to the same processas a result
of the pessimistic model used T P. Obviously, in more complex DAGs, this will
tend to increase the overhead cost and the makespan of theasipp. In Section 3.3
we will consider a more sophisticated method to improve tiilezation of resources
and minimize the impact of the migration cost on makesparexpjoiting copies of
results.
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Figure 3.3: The Migration Model in GTP

3.2.3 Costing of Candidate Schedules

Our cost prediction approach is based upon redefinition atepts drawn from the
standard scheduling literature [(Kwok and Ahmad, 19998)p¢uoglu, 2002)], to-
gether with some additional operations required by the dyoally heterogeneous
nature of our target system.

3.2.3.1 Estimating Communication Cost

During (re)scheduling at timg we need to predict how much time will be required
to transfer data for various candidate assignments of tasgsocessors. In general,
this will depend upon the processors involved and any exjgpartial completion of
the transfers. Thestimatedcommunication cost in standard-units to transfer data
associated with an edggv;, vj) from pm, (processor assigned ) to p, (processor
assigned taj) is defined by,

daté(vi,vj)
bandwidt&(pm, pn)

C'(Vi, Pm, Vj, Pn) = StartU p+ (3.3)

StartUpis the system dependent fixed timgaken between initiating a request for
data and the beginning of the data transfer, and is thereiggeapplicable to trans-

fers which have not already begun (including the migratatidaas we explained in

Section 3.2.2),
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(k9(vi,vj) =0and gy # pn) or
StartUp=ts, if { (M(Vi) # pm) or (3.4)

(M(vj) # pn)
being O otherwise. Equation 3.4 captures the situation iithvh non-zero start-up
cost is counted: either the transfer has not yet begun, csdbece and/or destination
are not those previously associated with the transfer, @.eiigration has occurred).
datd(vi,vj) denotes theemaining volumef data to transmit from task to taskv; at
timet and is computed as

datd (vi,v;) = data(vi,vj) * (1 —k%(vi,V;)) (3.5)

3.2.3.2 Estimating Computation Cost

In estimating the value of candidate schedules we need thgbrthe time at which
some task could begin execution on some processor and teatimhich that execu-
tion will finish. These times depend upon the availabilitylad processors (which may
have other tasks to complete first) and the availability putndata (which may have

to be transferred from other processors). We must first défmoemutually referential
quantities. EST (vi, pm) is theEstimated Start Timef taskv; on processopy, where

the estimate is made at timeFor tasks which have already begun (or even completed)
on pm att, EST will bet (the effect of already completed work will be allowed for in
EFT).

v —
EST(v.pm) = t if 4P (V)= Pmand (3.6)

K(vi) >0,
For other tasks it will be determined by the need for predsmesofv; to complete and
send their data t@,.

EST (vi, pm) = max{PA (pm), DA (i)} (3.7)

wherePA! (pm) is a function which returns the time at which the processoobees
available, having completed other tasks. We notice thatmmdel uses a non-insertion
approach to fill the available capacity of processors, floeeethe function will return
the latest estimated finish time among tasks already asbigns,.
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PAt(pm) = max{vi | (p,t(vi):pm)}{EFTt(Vi, pm>} (38)
Meanwhile, DA (v;) is the estimated earliest time at which data from a predecess
taskvj (mapped ond (vj)) will be available atpn.

DA' (Vi) = max,, cprediv) {EF T (Vj, P) +C' (v}, Pk, Vi, Pm) } (3.9)

The max block in equation 3.9 returns the estimated timerniarof all data needed
to execute task; onto processopm. This is calculated by considering the evolving
status of eaclj € Pred(v;). Similarly, EFT'(vi, pm) is theEstimated Finished Time
of the computation of tas¥ on processopn,. For already completed tasks (atwe
will have

EFTY(Vi, pm) =t,if K°(v)) =1, (3.10)

For other tasks it will be determined by the quantity of wotksianding and the avail-
ability of pm.

EFTY(Vi, pm) = EST(Vi, pm) + W' (Vi, pm) (3.11)
whereW!(vi, pm) denotes the amount of work still to completed for tashn processor
Pm, defined by .

W, )~ W10 L)

As with communication cost prediction, migrated tasks nmhestcosted for a restart

(3.12)

from scratch (i.e., we resmd(vi,vj) = 0). We note that our model ignores possible
contention in communication by effectively assuming amitéi number of links from
Pm to pn (the assumption is implicit in thenaxin equation 3.9). We are aware that
this assumption may affect the predictions of the schedydeerated by our models.
In the literature we find some scheduling methods [(Sinneal.eR006), (Sinnen and
Sousa, 2005), (Agarwal et al., 2006)] which consider traffiotention in their schedul-
ing decisions. The discrepancy between real and predictezbtis incorporated into
our rescheduling as a result of the difference between bhctuapletion information
(k®,k9) returned by monitoring, and that which would have been etqukat the pre-
ceding RP. Thus, the overall objective of minimising thd reakespan of the DAG
application is achieved by minimising iteratively the estied makespan.

3.2.4 Scheduling in the GTP Model

The procedure of the GTP model is as follows. The GTP modethirag main parts:
the first part concerrthe generation of the initial schedylgiven the initial task graph
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in IT G and the initial resource performance informatiorSRRP We consider that the
initial schedule is generated by a standard static mappethoa and launched to the
SHCS. The second part concethe cyclic use of the mapping methatlich has two
principal phases. The first phasel& computation of task ranKpriorities) for each
task. This phase is performed just once before startingtéeLgion of the application.
After this, in keeping with the principles of list-schechi, we maintain a list of un-
finished tasks ordered bgnk and updated at each RP (removing finished tasks). The
rank determines the order in which tasks are assigned t@psocs. The second phase
is the costing of candidate schedulghich selects each unfinished task from the list
according to its rank (priorities). Then, for each such tasksTP computes the esti-
matedEarliest Finished TIm¢EFT) value for scheduling to all processorg; € P and
remapsy; onto that processor which offers the smallest EFT. The rdfiask schedule
generated at timeis represented as a functigh: V — P such thal(vi) = pn, de-
notes that task; is to be executed by processay att. Notice that forplacedtasks

vi, which have not been migrated b, we will havept (v;) = M(v;). Finally, the third
part concernsipdatingthe latest information about both the performance of resesir
and the progress of the application into ®BPandST Gstructures respectively. The
second and third components are iterated at RPs, in respomy@mamic changes in
resources. The cycle continues until the application fesstxecution.

To illustrate the procedure of t&T Pmodel, we will the use the task graph, the target
architecture and the static information about the tasksrongssors from Figure 3.2.
Thus, at time = O the information concerning the resources is initializz&RP (see
Figure 3.4(a)) and the initial information about the apation in1TG is copied to
STG (see Figure 3.4(b)). The next step is to generate thalisgthedule, which in this
case is generated by using the HEFT algorithm, as shown uré&ig.4(c). Then, the
initial schedule is launched to the SHCS. We assume a fixedfRB, avhich means
that every 14 time units, a remapping of the application isstdered. Note that in
Section 4.2 we discuss how the fixed length of the rescheglplints was chosen.

Following the procedure, at the RPtat 14, SRPis updated with the latest perfor-
mance of resources shown in Figure 3.5(a), where we obdeevesource changes in
either processor availability or bandwidth, which occdrfieom the period of time be-
tweent =0 andt = 14.11(py, p3) varied in bandwidth (from 1 to 0.7) and procesger
varied in availability (from 100% to 70%) arié (from 100% to 40%). The progress
of the application ifST Gis shown in Figure 3.5(b). We observe thgthas finished
executiony, is being executed and the data transfersefof, vl) ande(v0,Vv5) have
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data(v0-v5) (p3-p2) 4 0

b) STG structure att =0 c) Gantt Chart at time = 0

Figure 3.4: Example (t=0) of the GTP System

been completed.

Then, given the progress of tasks, the list of unfinishedstéskipdated and given the
latest information about the performance of resourcesiibéel reschedule the appli-
cation in response to variability in resources. Thus, feitgy the costing of candidate
schedules, in which tasks are assigned to that processchwiffiers the minimum
Earliest Finish Time, the refined scheduled is generatedsaondn in Figure 3.5(c)
where we observe that the new estimated makespan of theafpgf is 94.78 units of
time.

We note that the task migrated fromp, to p; asp; offered the minimum earliest
finish time. This action requires the retransmission from ¥lery beginning of data
from vp to vs. Obviously, the migration model will tend to generate mtgras only
when the benefits are substantial, and will reduce the patdat schedule thrashing.
Therefore, in terms of our formalization, a migrated taskdraesnon-placeduntil it
starts to gather inputs again. For costing purposes, thasgthat for a migrated task
Vi, we must resek®(v;) = 0 (the computation must restart) artl(vj,v) = 0,Vv; €
Pred(v;) (all communications t®; must restart).
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Figure 3.5: Example (t=14) of the GTP System

3.2.5 Time Complexity Analysis for the GTP model

The time complexity analysis is centeredliie cyclic use of the mapping methpalrt
which involves two main phasegshe computation of task rankendthe costing of
candidate schedulgsee Section 3.2.4). The computation of task ranks tragehse
graph upward from the exit nodes which can be don®(e+v). Then, we have the
sorting of the list of tasks by rank (priorities) which tak@év x log v). The costing
of candidate schedules which selects a tagkom the list and maps each task onto
that processor offering the minimum earliest finish timée&O(e x p) for e edges
and p processors for each cycle. For a dense graph when the nurhleegese is
proportional toO(v?), the time complexity for the costing of candidate schedsilefi
the order ofO(V? x p). Thus the time complexity for the cyclic use of the mapping
method for each cycle is of the order©fv? x p). We will report on actual times for
real examples in Chapter 5.

3.3 Description of the GTP/c Model

TheGT Pmodel described in the previous section addressed the dgabyrheteroge-
neous nature of SHCS by allowing rescheduling and migratféasks when this helps
to minimize makespan. 16T P, a migrated task had to be restarted from the very be-
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ginning, including regathering all inputs directly frons predecessors. Obviously this
negatively affects the makespan of the application. We rebgefrom experiments
with GT P that as a consequence of the adaptive nature of the moded, issults of
some completed tasks transmitted to succeeding taskshwWdtigr on migrate to an-
other processor, can be reused after subsequent migrasopsssible sources of its
required data. To exploit this observation, we extended3fd model by adding a
Copying Maintenanctinction, resulting in a new version, the Global Task Positig
with copying facilities (GTP/c) system. The over@T P/c system is sketched in Fig-
ure 3.3 in which we consider the maintenance of a collectforwsable copies of the
results of completed tasks. This information is maintaimetie ST Gstructure which,
as before, contains the dynamic information related to thgness of the application.

2
8 Static
o Schedule = SHCS
o
8 sta
= C
< SRP -
[a) coples
A
1
Application monitoring information
Application Feedback . SHCS monitoring information

- — — - Schedule Generation (only once at the beggining)
Schedule Evaluation (Rescheduling)
,,,,,, Schedule Feedback (only once at the end)

Figure 3.6: The GTP/c System

3.3.1 Definition of the SHCS

We will take the same definition and assumptions from@eP model described in
Section 3.1.1 to represent Shared Resource P&R$)(in GTP/c. We notice that
GT P/c assumes sufficient storage to maintain the reusable copieaah processor.
A natural danger in real environments is that when the appbao has a relatively high
number of tasks and data transfers, the copies could ovémwdrasting data storage.
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A complementary work can be found in [(Ramakrishnan et 80;72], which considers
data-storage constraints when scheduling data intenpplécations. Their approach
is two-fold: they minimize the amount of space a DAG applmatequires during
execution by removing results of completed tasks (i.e.pwiufiles) at runtime when
they are no longer required and they schedule the applicatia way that assures that
the amount of data required and generated by the applictitioanto the individual
processors.

3.3.2 The Situated Task Graph with Copying (STG/c)

We extend the definition of the Situated Task Graph structigfned in 3.1.3 as
STG/c:: (V,E,dataW, M,k k%, Q), where the first seven components are taken di-
rectly from the previous definition TG The key new concept is that cdusable
copy. A data transfer for a particular ed@é, j) is said to becomesusable copyn

a processor once it has been totally transmittéde(i, j)) = 1) from M (v;) to M(v;).

It is reusablebecause if during the process, migrates to a different processor, the
copy may be used as source in subsequent scheduling deci$ioa copy will remain
reusable until task; finishes execution. The adaptive nature of our model allows m
tiple reusable copies for a particuleli, j), since task/j can migrate at each RP, if the
benefits are substantial. We hope that reusable copieselilith minimize the impact
of migration on makespan by avoiding unnecessary datafaabstween tasks and
exploiting the network links which offers the minimum datartsfer cost according to
the latest performance resource information. To do thisneed to keep information
about everyeusable copgenerated at timein our model. We us€y :: E — P(P) to
describe the subset 8fwhere copies of the given (edge) data are available atkime

3.4 The GTP/cScheduling Method

In this section we describe the GTP/c method.@EP/c is an extension o6 TP, it
has the same three main parise generation of the initial schedylie cyclic use of
the mapping methodnd at each cyclejpdatingthe latest information about both the
performance of resources and the progress of the applicatto theSRPandSTG
structures respectively.
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3.4.1 Setting Task Ranks

We keep the same process to set the task ranks (prioriti@s) tiheGT P model de-
scribed in Section 3.2.1.
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Figure 3.7: The GTP/c Migration Model

3.4.2 The Task Migration Model in GTP/c

The adaptive nature of th@T P/c model is illustrated in Figure 3.7 where we can
observe the difference of strategies used betw@&® andGT P/c. In terms of our
formalization a placed task is migrated when it has been rescheduled onto a pro-
cessor other thafl(v;). We recall thatGT P uses a pessimistic model, in which the
migrated task must be restarted from the very beginningudiceg regathering all
inputs directly from the predecessors (see Figure 3.7(@pw, with GT P/c, in an
execution with relatively frequent migration, it may be thaver time, the results of
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some task have been copied to several other nodes, and seexjgeht migrated task
may haveseveral possible sourcdsr each of its inputs. Some of these copies may
now be more quickly accessible than the original, due to dyoaariations in com-
munication capabilities. For instance, in Figure 3.7(lb)R&,, taskvs could not be
executed ags3 only received the required data from tagk However, the idea behind
the GT P/c model, is that we now maintain the copy of the result gendrhtev; in

the system iQn(e(v1,Vv3)) , such that it may be used as an input in future migrations
for v3. Thus, atRR, and after considering the latest information about botbueses
and progress of the application, tagkis migrated fromp, to p2 and we observe that
the required data fronm can be transmitted from the sipa storing the copy or from
the sitep; wherev; was executed. The decision to select the site from which aitee d
will be transmitted will depend upon the prediction of thenfmum estimated finish
time which involves the estimated availability of the presers (which may have other
tasks to complete first) and the estimated availability pluindata (which may have
to be transferred from other processors). Following thevea, atRR, 1, v3 was not
computed as it had only received data fregn This creates a new copy in the system
and is maintained i 1(e(v2,Vv3)) for future migration forvs. At RR,;1 taskvs is
now migrated frompy to p4, and we observe that there are several possible sources for
each preceding task. At the end we observe ¥gad finally executed, using the copy
Qn(e(v1,Vv3)) and a direct data transfer fefvy, vs3).

3.4.3 Estimating the Communication Cost

In the same manner &T P, during (re)scheduling at timg we need to predict how
much time will be required to transfer data, now considetimgt the data for a par-
ticular edge may have several copies distributed on ses#esl, for various candidate
assignments of tasks to processors. In general, this wikde upon the latest per-
formance information of the link (bandwidth) associatethvihe processors involved,
the location of the reusable copies generated and any pieyartial completion of
the transfers. We retain definitions 3.3, 3.4 and 3.5 foiGfRd>model, to estimate the
communication cost in standard units.

TheCopying Manageme(@M) function defined in equation 3.13, will return the min-
imum data transfer cost for data associated withj) to ' (vj). Thus, for a particular
e(i, j), CM evaluates the locations (processors) for each reusableinap;(e(i, j))
and together with the latest bandwidth of the links involvedurns the minimum data
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transfer cost g (vj).

CMt(Vi,Vj) =
MiNoe o (e(i. ) {C (Vi P, Vi, H(Vj)) } (3.13)

3.4.4 Estimating Computation Cost

We retain the equations 3.6, 3.7 and 3.8 for@¥ePmodel to predict the time at which
some task could begin execution on some processor. Howeveych prediction
we must now include the existing copies which will certaialffect the beginning
execution of tasks. Thus, we have redefined the equatiorug®that, now the new
equation 3.14 will compute the estimated earliest time atlvtiata from a predecessor
taskvj (mapped ond (vj) and any available copies of their results) will be availale

Pm-

DAt<Vi) = maX/jePred(vi){EFT(Vjv Pk) +CMt(Viji)} (3.14)

In the same manner, we need to predict the time at which theatugion will finish.
For this, we retain equations 3.10, 3.11 and 3.12 for GTP.
As before, migrated tasks must be costed for a restart fraisdc (i.e., we reset
k9(vi,vj) = 0) andGT P/cignores possible contention in communication by assuming
an infinite number of links fronpy, to py.

3.4.5 Procedure of the GTP/c Model

The procedure of the GTP/c model is the same as that followetthdoGT P model
described in Section 3.2.4 with the introduction of copiésaxng for more flexibility
in scheduling.

To illustrate the procedure of t@T P/c model, we will extend the example of Sec-
tion 3.2.4, in which we used the tasks graph, the target tecture and the initial static
information from Figure 3.2 to follow the procedure of t88 Pmodel. Thus, at time
t = 0, the first part related witthe generation of the initial scheduig the same as
GT Pwhere the initial schedule is generated by using the HEF®ralgn and shown
in Figure 3.2(d), followed by their launch to the SHCS. Thantimet = 14, GTP/c
uses the same sequence of resource changes as that Us&®,invhich is updated
in the SRPstructure (see Figure 3.8(a)). The progress of the appitas shown in
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Figure 3.8: Example of The GTP/c System

Figure 3.8(b) where we observe that has finished executiomw, is being executed
and the data transfers fefvp,v1) ande(vp,Vvs) have been transmitted. According to
our formalization, two copies have been generated at thist,pone ofe(vp,Vvs) and
one ofe(vp,Vv1). These copies can be used in future migrations/dcndv;. Follow-

ing the procedure 0BT P/c, given the progress of the application and given the latest
performance information about the performance of resa(@& P/c reschedules the
application obtaining a new refined schedule shown in Figuséc). In this schedule
we observe that task migrated fromp, to p1, and the model decided to use the copy
of e(vp, V5) located onpy, as it allowed the minimum earliest finish time for tagk to
retransmit the required data fefvp,vs). The benefit of such decision is reflected in
the estimated makespan which is now 93.1 units of time (1.Bé&er than the 94.78
units of time computed for the estimated makespari¥oiP shown in Figure 3.4(c)).

3.4.6 Time Complexity Analysis for the GTP/c Model

We focused on time complexity analysis of ttyelic use of the mapping methpdrt
which involves two main phasegshe computation of task rankandthe costing of
candidate schedulesee Section 3.2.4). As before, the computation of tasksrank
traverses the graph upward from the exit nodes which can be odO(e+ v). Then,
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we have the sorting of the list of tasks by rank (prioritie$jieh takegO(v x logv). The
costing of candidate schedules which selects atafitom the list and computes the
earliest finish time value for schedulingto all processors, for which it is considered
that the results (copies) of some tasks Pred(vi) can be stored in others sites, takes
O(ex p) for e edges ang processors. For a dense graph when the number of edges
e is proportional toO(v?), the time complexity for the costing of candidate schedule
is O(V? x p). Then the time complexity for the cyclic use of the mappinghod for

each cycle is on the order @f(v2 x p).

3.5 Reliable DAG Scheduling with Rewinding and Mi-

gration

In the literature we can find some mapping methods to execAte &pplications on
SHCS. However, most of them (includigT P andGT P/c) are not able to react to
extreme variations (i.e., processor failure) in some ofpghecessors. Effective DAG
scheduling methods for SHCS must include fault toleranthmaaisms to preserve the
execution of DAG applications, despite the presence ofuresofailure. To address
this, we designed the rewinding mechanism, an event-dgveoess executed when
a failure is detected at some checkpoint (see Figure 3.9%. ré@Wwinding mechanism
preserves the execution of the application by recomputimyraigrating those tasks
which will disrupt the forward execution of succeeding ®sKhis section describes
the rewinding mechanism and shows how to integrate it withinreactive mapping
methods. At the end of the section we define some metrics toadeethe performance
of such mechanism.

Fault tolerance (as reviewed in Section 2.8) is an impoiitste in SHCS as the
availability of resources can not be guaranteed. The poeseha resource failure
in a particular processqpy, during execution at time¢, may disrupt the subsequent
execution of other tasks. The tasks expected to be disrgptede grouped as a) those
tasksv; mapped to a processor other thap, but still retrieving data from preceding
tasks already executed @@, and b) those unfinished tasks mappeg#avhich have
begun to gather input data for execution.

The integration and performance of the rewinding mechammmour scheduling
method, is highly dependent upon the details of the scheglgirategies used, en-
compassing issues such as task assignments, data transigrgtion of tasks, data
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Figure 3.9: The Rewinding Mechanism

replication and so on. Thus, we identify three main step®tsicer in the integration

of the rewinding mechanism into a particular reactive sciiag approach,

1. The first step is related to the integration of the rewigdimechanism with the
data structures containing the information on both thegreréince of the pro-
cessors composing the SHCS and the progress of the appfi¢ag.,ST Gand
SRPdefined below).

2. The second step is related to the procedure of the rewgnaiechanism itself,
which will rewind those critical tasks associated with théefd processor which
will disrupt the forward execution of succeeding tasks.

3. The last step is related to particular considerationfiéxdynamic scheduling
strategy (i.e., copying, data replication) and deals wesetting the information
maintained in the system and linked to the failed proces$sawoid inconsisten-
cies in subsequent scheduling decisions.
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3.6 The GTP System with Rewinding (GTP/r)

We recall that the GTP system defined in Section 3.2 allowshextuling and migra-
tion of tasks in response to variations in the performancesburces. The inclusion
of the rewinding mechanism in@T P produces th&T P/r version.

3.6.1 Definition of the SHCS

We have to identify key information related with the proaessavailability used by
the model. The dynamic information about resources in SHa&SkHeen defined in
Section 3.1.1, in which Shared Resource Pools (SRP) aresepted with graphs
SRP:: (P, L,availbandwidth) whereP is the set of available processors in the system,
pi(1<i<|P|). Lis the set of communication links connecting pairs of didtjpro-
cessorsli(1 <i <|L|) such that(m,n) € L denotes a communication link betwepq
andpn. The decision to rewind the application will be based upanl#test available
resource performance information (as returned by stan@adimonitoring tools such
as NWS or Globus MDS). Thus, at timeve assume knowledge afail' :: P — [0..1],
capturing the availability of each CPU. Failure in some ps8soIpy, occurs when the
latestavail'(pm) = 0. Then, at each RP, if a failure is detected then the rewindin
process will be triggered to rewind the application. We bt failures in traditional
distributed systems are mostly linked to physical failundgch make the resources
unavailable. However, in our context, in which resourcessirared and autonomous,
a failure embraces other situations, which affect the atbdity of resources. For in-
stance, during the execution of the DAG application, we mayelthe case, outside
our scheduler’s control, in which a particular processassigned to another job with
higher priority.

3.6.2 Definition of the Situated Task Graph (STG)

Just as we use dynamic information about resourceSRRto take decisions about
when to rewind the application, so we must identify the dyitamformation related
to the progress of the DAG application to determine whiclksasill be rewound.
The information related to the progress of the tasks has deéned in Section 3.1.1
where we define®T G:: (V,E,dataW,M,k%"). V is the set of tasks; (1 < i < |V|).

E CV xV is the set of directed edges connecting pairs of distinksteg1 <i < |E|),
wheree(v;,Vj) € E denotes a precedence constraint and data transfer fronvjtask
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taskvj. We usedata::V xV — Int to describe the size of data transfers, such that
data(i, j) denotes the amount of data to be transferred fipro vj. W1V x P —
Int, indicates the heterogenous characteristics of the psocesomposing a SHCS
whereW i, m) denotes the execution time in standard units of task processopm.
M:V — PT represents placement informatioA’ represent® augmented with the
special valulNONE For placed taskg, I(v;) indicates the corresponding processor.
For non-placed tasks, M(v;) = NONE For future convenience, we defi@:: P —
?(V) to denote the current set of placed tasks mapped on paelP. Recall that a
placed task remains placed until migrated or until the wtagdplication terminates,
because even after task completion we will later need toexetr(or re-retrieve in
the case of migration) its results. As before, we «Se: V — [0..1] to capture the
proportion of a task’s computation which has been completed similarlyx® :: E —
[0..1] to capture the proportion of a data transfer which has beemptzied. A key
new concept is that of rewinding a placed tagkvhich means that all the current
computations and all their inputs and outputs will be itizeed, giving the impression
of rewinding the application to a previous state. To rewindskyv;, at timet, we must
perform the following operations on tf&T Gdata structure.

1. Wvj € SUCQV)) setk9(v;,vj) to 0
2. Vv € PREDV;) setk9 (v, Vi) to 0
3. Setk®(vj) to0

4. SetM(v;) to NONE

Thus, rewindingy; gives the impression of rewinding a portion of the applizati
to a previous state in which nothing has happened and leavimglaced once again.

3.6.3 The GT P System with Rewinding ( GT P/r)

In this section we define th&T P system with rewinding&T P/r) to preserve the
execution of a DAG application despite the failure of a gatar processopn, during
the processQ'(pm) = {Vo,V1,V2, ..., Vk} contains the set df placed tasks known at
timet to be mapped ontpy,, from which we will rewind those placed tasks which are
expected to disrupt the forward execution of succeedingsta3o do this, we must
consider each task g € Q'(pm). Intuitively, vi must be rewound if either.
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Figure 3.10: The Rewinding Mechanism for GTP

I it has a successor task which has not yet received a comgeieof the result
of v;, or

i it has a successoarj, which is also assigned o, and which also needs to be
rewound.

The recursive form of this rule means that we must considsestinQ' in an or-
der which respects a reverse topological sort (accordirigg@recedence constraints
between tasks). Thus, with® (pm) we must consider exit tasks first, then their prede-
cessors, and so on. This ordering is straightforward to taainn an implementation
because all precedence information is available. Thusslaac Q'(pm) must be
rewound if,

1. Je(vi,vj) € E:k9(w,vj) <1, or
2. dvx € SUCQV)) : W € Q'(pm) and  must be rewound

Note the importance of maintaining information about afiqad tasks irQ', in-
cluding those whose completion is complete.
Following the procedure, we now know that no informatioratetl to the failed proces-
sor pnm, is maintained irGT P/r. Obviously, after the rewinding process, the failed pro-
cessor will not be considered in the subsequent scheduticigions, unlesavail' (pmy,) >
0 at future RP’s.
To illustrate the rewinding mechanism, we extend the examapFigure 3.3 by adding
a failure in processqgp3 before finishing the execution of the DAG application at som
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point betweerRR,, 1 andRR,. 2> as shown in Figure 3.10. We observe that the fail-
ure in pz will inhibit the precedence constraint satisfaction &w-,v3) asvs will stop
retrieving the input required frona, to start execution. Then, the failure will be de-
tected aRR, 2 and therefore the rewinding mechanism will be triggeredhist point.
The rewinding mechanism must determine which placed tasisoed tops need to
rewind to preserve the execution of the DAG applicationRR, 2, Q"2(p1) = {v1},
Q™2(p3) = {Vv0,v2} andQ"*2(p4) = {v3}. Then, the rewinding mechanism will eval-
uate in reverse order the sequence of each placedvitasi™?(p3). Thus, the first
task to evaluate ig, which as we observe inhibits the precedence constrairgfaeti
tion for e(vo,Vv3), asvs will stop retrieving input fromv, executed orps. Then,v,

is rewound as explained above. Now, the next task to evafuaie Q"2 (p3) is vo,
which Sucgvp) = {v1,v2}, then for the first precedence constrafio, v1) is satisfied
asv; has finished its execution pt. However, when evaluating the second precedence
constrainte(v0,v2) we observe that it is not satisfied gs(already rewound) will not
be able to retrieve their input fromy executed orps. Thus, task/y must also be re-
wound. Since, task& andv, were rewound, they will be ready to be rescheduled and
migrated to a different available processor, guarantethieglata transfer of the remain-
ing tasks and preserving the forward execution of the DAGQiegton. Obviously the
processoipz will not be considered for scheduling decisions. Followihg steps for
the rewinding mechanism, there is no additional infornratioked to p3 which could
lead to inconsistences in scheduling decisions. Aftermdimig and rescheduling the
application aRR, 2, the taskvz was finally executed gi, after receiving the required
inputs.

3.7 The GTP/c System with Rewinding (GTP/c/r)

In the same manner we will follow the three steps defined tegirate the rewinding
mechanism into th&T P/c system resulting in th&T P/c/r version.

3.7.1 Definition of SRPand STG

Our definition of SRP(Shared Resource Pools) a8d G(Situated Task Graph) are
identical to those from th&T P/c system defined in Section 3.3. In particular we
remembeQ :: E — P(P) to capture information on location of copies which can be
used as source ar@ captures information on tasks placed on each processor.
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Figure 3.11: The Rewinding Mechanism for GTP/c

3.7.2 Procedure of the GTP/c/r Model

The rewinding mechanism fd&T P/c/r is similar to that forGTP/r. In the same
manner, the placed tasksc Q'(pm) are evaluated in reverse topological order. The
first criterion to select those tasks to be rewound is the sas@&T P/r, which states
that a placed task mapped tq, will be rewound if there exists at least a data transfer
e(vi,V;j) € E such that it is partially transmitted’ (v, vj) < 1. However, now we have a
second criterion to be met related to the existence of plessibsable copies (g, )

for a particular edge(vi,vj) € E, such that if there exist at least one reusable copy in
a processor different thapy, then it means that; can retrieve the data from its copy
despitepm, and therefore rewinding is not needed. This particulauiesof GT P/cis
expected to reduce the overhead cost generated by the iagiméchanism.

More formally, forGT P/c/r, a taskv; € Q'(pm) must be rewound if,

1. Q(vi) = {pm}, (thisisthe only copy and either
2. 3(vi,vj) € E:k9(vi,vj) <1, or
3. v € SUCQV)) : v € Q'(pm) and \ must be rewound

As before, for tasks to be rewound, we must reset elemenks,of¢ and I to
reflect the rewinding.
ForGTP/c/r, all the copies located at the failed procesggrand maintained iIsT G
can lead to scheduling thrashing if they are not eliminafiétus, and following with
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the procedure, those copieﬁ(a,j ) = pm Must be eliminated fror8T G

To illustrate the rewinding mechanism f&T P/c/r, we will use the same case as for
GT P/r with the same failure in processp8 at some point betwedRR,; 1 andRR,; .
This is shown in Figure 3.11. ARy, 2, Q"2(pl) = {v1}, Q"*?(p3) = {v0,v2} and
Q™2(p4) = {v3}. Then, the rewind mechanism will evaluate in reverse orter t
sequence of each placed tagke Q™2(p3). Thus, the first task to evaluate vs
which, as we observe, inhibits the precedence constrdisfaetion fore(vy, v3), asvs
will stop retrieving input fromv, executed orps. However, due to the maintenance of
reusable copies foBT P/c/r, the input required bys from v, can be retrieved from
the copy stored ap,, satisfying the precedence constraint. Then, rewindisg va

is not needed. The next task to be evaluateg iwith Sucgvp) = {v1,v2}. The first
precedence constraint fefvp, v;) is satisfied as; has finished execution @. The
next precedence constraint #&o, V) is considered as satisfiedgskept its status of
finished task, because it was not rewound. Thus vgskill not be rewound. Finally,
sinceGT P/c/r maintains a collection of reusable copies some of which nesstbred
at p3, we need to reset those copies storegzatvhich could lead to inconsistence in
future decisions. In this case, the capy(v», v3) stored atps must be deleted from the
system as it can lead to inconsistences in the schedulingioles in the case that task
v3 be migrated in the future. Thus, after the third step, theieaiion has been rewound
and its execution has been preserved despite failug @t RR,, 2. Completing the
example, after rewinding and rescheduling the applicatibRR,, 2, v3 was finally
executed ap, after receiving the required inputs.

3.8 Summary

In this chapter we defined the proposed reactive scheduleahanisms to address the
dynamically heterogeneous nature of SHCS. We started bgidgfthe Global Task
Positioning GT P) scheduling system, a list-scheduling heuristic basedate¢dich
addresses the problem of heterogeneity and dynamism of Sig@Bwing reschedul-
ing and migration of the tasks of an executing applicatioexiNbased on observations
of previous results foG T P, we defined the Global Task Positioning system with Copy-
ing facilities (GT P/c) which re-use information to improve the utilization of oesces
and to minimize the impact of the migration cost on the agpicsn makespan. Finally,
considering that fault tolerance is an important issue ITCSHvhere the availability
of processors cannot be guaranteed, we defined the rewint#obanism, which pre-
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serves the execution of the application, despite the poeseha processor failure.
Unlike other fault tolerant approaches, our mechanismges the execution of the
application by recomputing and migrating those tasks whihdisrupt the forward
execution of succeeding tasks. We showed how to integrateethinding mechanism
into GTPandGT P/c.



Chapter 4
The Simulation Framework

The evaluation of our reactive scheduling mechanisms islected by simulation,
since this allows us to generate repeatable patterns afires@erformance variation.
In this chapter we describe all the elements involved in thukation framework in
which we conducted the evaluation. We start describing thiece and characteristics
of the Input Task Graphs (ITGs) used in the evaluation. Thmembering that SHCS
is dynamic, we describe the distinguishing charactegsticour scenarios. Next, we
explain the criterion used to define the fixed reschedulingtpaised to reschedule the
application. The next elements that we describe are theiagretsed to evaluate the
performance oGTP, GTP/c, GTP/r andGT P/c/r. Finally, we describe the Simgrid
software used to perform the evaluation. We describe thecdliies that Simgrid
presented to manage dynamic events in simulating vargiiorhe performance of
resources. To address this problem, we designed a trackechanism, built on top of
Simgrid, which allows changes in resource performanceastaristics over time, as
observable in real dynamic resources.

4.1 The Directed Acyclic Graphs (DAGS)

In this section we present the Input Task Graphs (ITGs) useddluate our dynamic
mapping methods. In the literature, different researclugsouse their own methods
to determine the shape and size of the DAGs used to evalugtarthpping methods
[(Topcuoglu, 2002), (Zhao and Sakellariou, 2004b), (Shi Blongarra, 2006)]. This
complicates the process of benchmarking the mapping metthesigned by different
researchers. In [(STG, 2000)] we found the Standard TasklG(&TDGP) Project,
an effort to define a set of standard DAGs for fair evaluatibmapping algorithms.

59
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The STDGP consists of two main sets. The first set containsadl set of four DAGs
modelled from actual application programs. For instanodrigure 4.1(a) we see a
task graph for Newton-Euler dynamic control calculationtfee 6-degrees-of-freedom
Stanford manipulator [(Kasahara and Narita, 1985)]. Feglid(b) represents a task
graph for a random sparse matrix solver of an electroniaudireimulation that was
generated using a symbolic generation technique and théd\@FORTRAN compiler
[(Kasahara et al., 1991)].

€6 ¢

L
giz

666 06 g6
96600

a)Newton—Euler graph application b) Sparse-matrix graph application

Figure 4.1: DAGs for Particular Applications

The second set, which we used, contains a considerable mafitask graphs (900
graphs) generated randomly. The graph size (in numberks}aaries between 50 and
2700. The graph shapes were determined based on four diffierethods [(Almeida
et al., 1992), (Yang and Gerasoulis, 1994), (Adam et al.4ay7
Before explaining the characteristics of each method, we timat, in terms of our
formalization in Section 3.1.2, a given initial DA@ G = (V,E,data W) can be rep-
resented in two different ways (see Figure 4.2). The firstaggh uses an adjacency
matrix, where thé!" node is represented #8 row andit" column, an edge frori" to
jth is represented as 1 in ravand columnj (no edge is represented as 0). The second
approach uses adjacency lists. For DAGs (directed acydiglts), nodes are arranged
as lists of arrays in which each node stores the succeedihggsrin the graph.

Let A denote an adjacency matrix with elemeats, j), where 0<i,j <n+1
denote tasks (0 is the entry dummy node anredl is the exit dummy node). Next we
explain the four methods used by the STDGP project to creéat®AG graphs.
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1 2 3 4
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Figure 4.2: DAGs representation

1. The first method to determine the shape of the DAG is 'sagi@g(Almeida
et al., 1992)], in which the creation of an edge is determibgdndependent
random values defined as follows,

Plai,j)=1 =mnforl1<i<j<N (4.1)
Pla(i,j)=0=1-mforl<i<j<N (4.2)
Pla(i,j)=0=1ifi>j (4.3)

The parametertindicates the probability that there exists a direct depeny
(edge) between taskand taskj. Equation 4.1 shows that the density of prece-
dence relations between tasks is determined by the valueaatl equation 4.3
indicates that the structure of the graph is acyclic. Theeafrtin [(Almeida

et al., 1992)] was unique, however in the STDGP project weendasthat it is
considered as a range of values. Figure 4.3(a) shows a rateddngraph with
50 tasks generated by the 'sameprob’ method, witeweas set in STDGP as
0.1 and 0.2. With thesameprobmethod, the number of precedence relations
increases as the number of tasks increases.

2. The second method to determine the shape of the DAG isdaheeigred’ method
which specifies the average number of predecessors for askhRigure 4.3(b)
shows a random task graph with 50 tasks generated by the pgadienethod,
where the average number of precedence relations was sgeasfi3. Currently,
the average number of precedence relation is set to 1,3 or 5.

3. The third method is the 'layrprob’ method [(Yang and Gerdss, 1994)], which
first randomly generates the number of levels (layers) intéls& graph. Next,
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the number of independent tasks in each level is randomlygslly, edges be-
tween tasks are connected randomly at different layerstioparticular method,
the author notes the importance that the shape of the DAGdmagyin the eval-
uation of scheduling approaches. Thus, they consider th@nving statistical
information to create the DAGs,

(a) The range of independent tasks in each layer, which appates the av-
erage degree of parallelism.

(b) The number of layers, and

(c) The average ratio of task weights over edge weights, hvapproximates
the graph granularity.

In keeping with the consistency of the previous methods, SMBGP project
uses the same probabilityas with the 'sameprob’ method to determine a direct
dependency (edge) between tasks. Figure 4.3(c) shows amatakk graph
with 50 tasks generated by the ’layrprob’ method, where tinalper of layers
was specified as 5 and the valueoias specified as 0.2. Currently, the average
number of tasks in each layer is fixed to 10, and the numbeyefsas calculated
as(number of taskg'10.

. The last method is the ’layrpred’ method which generatgsls(layers) in the

same manner as with 'layrprob’, with the mechanism to coneéges as 'samepred’.
Figure 4.3(d) shows a random task graph with 50 tasks gexteat the ’layr-
pred’ method, where the number of layers was specified as Srendverage
number of predecessors was specified as 5. Currently, thragez@umber of
tasks in each layer is fixed to 10, and the number of layers l=uleded as
(number of taskg'10, with the average number of predecessors set to 1,3 or
5.

For our experiments we extracted frd8fT DGPa sample of DAGs to be used as

an input into our model. We first defined the range of the sze&@imber of tasks) of
the DAGSs to be used. The size of the DAGs is 50,100,300,50@ 606 tasks. Then,
for each size, we selected randomly (from the 900 DAGs in SPD@® to 3 DAGs
for each of the creation methods. Thus 12 DAGs were used fdr s&e giving a
total of 60 DAGs. The STDGP project makes a pair of assumgptianich limit the
applicability of the DAGs graphs for evaluating mapping huets for SHCS. The first
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a) Sameprob b) Samepred c) Layrprob d) Layrpred

Figure 4.3: Random DAGs in the STDGP Project

assumption concerns the absence of communication costgatasks, and the second
concerns the assumption that the DAGs will be evaluated mdggneous environ-
ments. To address this, we included a module to gen@vadeddatainformation to
produce our ITGs. Remembering that our processors aredgetieeous, the task com-
putation times for a particular taskwere created for each processor using uniformly
distributed random numbers from the interval [1 to 10]. Facle size of DAG, we
generated three different graphs with different Commuioceto Computation Ratio
(CCR) characteristics, to test the mapping methods. The’'®SGR is defined as the
average of all its communication costs divided by the awermaigall its computation
costs. Notice that, due to the heterogeneous nature of ti¥egon, the computation
cost of a node is approximated by the average of its costsaalbprocessors. Thus,
for each size of the task graph, we generated three diffgnapths for CCR equal to
0.1,0.5and 1.5.

4.2 Setting the Fixed Rescheduling Point

The setting of rescheduling points is an important eleméaydic mapping methods.
We use a fixed length rescheduling cycle. Choosing the leofgthe cycle presents
a trade-off. A long cycle will not properly react to dynamicanges. For instance it
is important to detect a failure in some of the resources an 88 possible to reduce
the impact of the failure on the makespan. Alternativel\h@rscycle can increase the
number of remappings and migrated tasks lengthening thespak. Thus, in keeping
with the principles of schedule feedback, we assume théeditity of the most recent
makespan of the application, and set the fixed-period relsdimg cycle at 10% of
the value of the makespan. For new DAG applications, we uséHtBFT approach
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to obtain the initial predicted makespan. Calculating atinogl size for each cycle is
a matter for further research. We believe that new effortsgimize the size of the
rescheduling points may improve the makespan of the apjgica

4.3 The Scheduling Scenarios

In this section we describe the characteristics of the adihegiscenarios used to eval-
uate the performance of our dynamic models. We recall th&HCS the availability
and performance of computational resources can vary dyaliyiover time, even
during the course of an execution. In order to have a morésteaénvironment to test
our dynamic mapping methods, we included into our scenawests which simulate

a change in the performance of the resource (availabilitgaordwidth). Thus, con-
sidering the nature of our dynamic mapping methods, we edeatpair of different
groups (TE1 and TEZ2) of scenarios. The first group (TE1) wasl us evaluate the
performance of th&TPandGT P/c systems and the second group (TE2) to evaluate
GTP/r andGTP/c/r. Both TE1 and TE2 contain the same events. The key differ-
ence is that we injected in TE2 an additional event simulgéirprocessor failure to
occur at the mid-point of the execution. Each scenario i&intgted for 5, 10 and 20
processors and assumes that processors are fully connected

4.3.1 The Scenarios for GTPand GTP/c

For each scenario, we defined events, each simulating arcescliange in either pro-
cessor or bandwidth availability. Then, we set a bound plarethe maximum vari-
ation allowed in one event, expressed as a percentage oketileperformance of a
resource. For example, in the scenario with a bound of 30%pae event can cause
the availability of a processor to decrease to no less th&maflts peak performance,
or of a link to decrease to no less than 70% of its maximum baittw We experi-
mented with a bound ranging from 0% to 90% in increments of 1@% will refer to
a particular scenario &CHEX, Y, z), which means that it involvesprocessorsy tasks
andz percent of variability in resources. Note tHBCEX,y,0) (no dynamic resource
variation) refers to a static environment, an approach umsethost of the mapping
methods in the literature [(Topcuoglu, 2002), (Shi and Dayrey 2006), (Sih and Lee,
1993), (Kwok and Ahmad, 1999a)]. It allowed us to investgidite extent to which
emerging discrepancies between real and predicted betaeithandled bysT Pand
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Figure 4.4: The Scheduling Scenarios for GTPand GTP/c

To illustrate this, consider Figure 4.4 which shows a sirmiafascenario with a
bound of 70% as the maximum variation allowed in one event.oWé&erve that each
event occurs at some point of time affecting the performanfi¢kee resources involved
in the event. The execution time of the tasks or data trassfethe resources involved
will be affected. Forinstance, procesgardecreases availability from 1 to 0.7tat 10
and such availability remains until= 30 whereps increases availability from 0.7 to
0.9. The execution time of tasks mapped optas affected. In the same manner the
link I(p1— p2) decreases in bandwidth from 1 to 0.8 at 10 and will remain so until
the next eventinvolving the link. Itis important to notethdile our simulation tracks
resource variations as they occur (with immediate impadesk execution time), our
scheduling algorithms only become aware of variations sthreduling points, and
may not even notice some short-lived variations. For exaptpring the rescheduling
point att = 35 the latest resource performance information will be tpdavithin
the model (i.e., the SRP structure). We note that at the eglkdimg point at = 35,
the availability for ps is 0.9 which will be updated in GRP, but the first change at
t = 10 whereps varied from 1 to 0.7 was never updated in GRP, however thelabeul
execution time of the task(s) being executed at that timebsicorrectly affected.
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4.3.2 The Scenarios for GTP/r and GTP/c/r

To evaluate the rewinding mechanism integrated withinGié>/r andGT P/c/r sys-
tems we created a set of scenarios forming the grb&@. Scenarios in this group
involve a similar sequence of randomly defined event$ B%, each simulating a re-
source change in either processor or bandwidth availgbilite key difference is that
TE2 may contain events with availability equal to zero, dating a processor failure
to occur at relatively the mid-point of the execution.

I(p1-p2) Processor Availability Time

Pl |=—= P2 P1 0.80 0
P3 0.70 10

P1 1.00 30

'P1-p3) 'p2-p3) P3 0.90 30
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Link Bandwidth  Time

a) SHCS system I(p1-p2) 0.80 10
I(p2-p3) 0.90 30

b) Sequence of events with a bound of 70%
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I(p2-p3) 1.0 1.0 1.0 0.9 0.9 0.
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I(p3-p1) 1.0 1.0 1.0 1.0 1.0 1.
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o Rescheduling Point

¢) Gantt Chart with simulating changes in resources

Figure 4.5: The Scheduling Scenarios for GT P/r and GT P/c/r

Figure 4.5 illustrates this case. It shows the same scemattioa bound of 70%
as the maximum variation allowed in one event, but with amesanulating a failure
(availability equal to zero) in processpg att = 50. This means that the tasks mapped
onto ps3 will stop the execution &t= 50 and those tasks mapped onto other processors
but still retrieving data from preceding tasks already exed atps, will stop retrieving
data as the processor becomes unavailable. It will not bietbatrescheduling point
att = 70 that the resource performance information (GRP) will pdated within the
model and the rewinding mechanism will be triggered, aftetedting this resource

failure.
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4.4 Comparison Metrics

In this section we describe the comparison metrics usedalate the performance
of our dynamic models. We first describe the metrics to eveltteeGT PandGT P/c
models and then we describe the metrics@drP/r andGTP/c/r.

4.4.1 Comparison Metrics for GTP and GTP/c

We use théNormalized Schedule Length (N$(8§wok and Ahmad, 1996)], also called
Schedule Length Ratio(SLKYopcuoglu, 2002)], to compare the performance of our
reactive approachesT P,GTP/c,DLS/sr andHEFT. The NSL metric is defined as
the ratio of the schedule length (makespan) to the sum ofdhgoatational weights
along the critical path. Note that, the critical path of atjgatar DAG graph is com-
puted statically. This means that, even though the reantigre (a new task graph is
generated at each rescheduling cycle due to some tasks mayimiahed execution)
of some competing methods, the NSLs obtained can be direathpared. The NSL
can be computed as

Makespan

NSL= (4.4)

ZVieCPathV_VI
Note that the denominator in NSL takes no account of depanemutside the

critical path. This makes it quite likely that the minimagtiretical NSL of 1 will of-
ten be impossible in practice, and that it is quite naturaNSL to grow significantly
as task graphs become large and complex. We use averagedvdSsed of DAGs as
a comparison metric. Our main interest in NSL (as opposedsolate makespan) is
as a means of judging the relative success of competing slgred

To help understand the behavior of each model, we introduee tother metrics aver-
aged over all the graphs under consideration:

1. The number of remappings in which at least one placed taskmigrated. This
may differ from the total number of remappings which can btedeined by
dividing the makespan of the application by the fixed-sizéhef rescheduling
point.

2. The number of migrated placed tasks over time.

3. The overhead cost incurred by the mapping method defindebasim of the to-
tal or partial re-computation or re-transmission of datalwed in the migration
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of tasks. We note that the cost of rescheduling the appdicas not included.
The fact thatGT P and GT P/c allow migration of tasks, does not necessarily
mean that there will be migrated tasks, but in those casesichwve have mi-
grated tasks, they incur an overhead cost.

4.4.2 Comparison Metrics for GTP/r and GTP/c/r

In the same manner, we use the NSL metric defined in equatibtodevaluate the
performance of the rewinding mechanism integrated intod¢hetive approachd&sT P
(GTPI/r) andGT P/c(GTP/c/r) models.

Little work has been conducted to design fault tolerant rme@ms for DAG ap-
plications. Thus, aiming to understand the behavior of suebhanisms, we will use
three complementary metrics averaged over all the graptierwsonsideration:

1. The Rewound Tasks (RT) metric, which counts the numbetaxfepl tasks re-
wound to preserve the execution of the application.

2. The overhead cost incurred by the rewinding mechanisnthigpart we in-
clude the amount of computation and data transfer (in uritene) which was
repeated as part of the rewinding mechanism.

3. The Rewound Levels (LR) metric, which considering thatBAG graph can be
divided into levels (layers), denotes the number of levietar deep) the appli-
cation had to be rewound after processor failure.

Note that the rewinding mechanism isr@sponsiveapproach, as it is triggered
when a processor failure is detected at some rescheduling pis true that, inject-
ing just one event simulating a processor failure at the paiht of the execution may
not reflect the behaviour of a real distributed system, wiogre or more processor
failures may occur at any point of time. However, we seek totai the consistency
in our scheduling scenarios by involving the same sequeh@ndomly defined (but
repeatable) events (each simulating a resource changéér processor or bandwidth
availability) used for evaluatinGT PandGT P/c. The key difference is that we now
injected an additional event simulating a processor failar occur at the mid-point
of the execution. Additionally, we make strong emphasishim ¢orrelation between
the rewinding mechanism and the mapping method (i.e., reddasks, rewound lev-
els). Thus, by considering the simple case in which only awegssor failure occurs
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during execution, we start to explore the impact of the magstrategies on the per-
formance of the application when a processor failure isaeteat some rescheduling
point. In the literature, some research projects addrgdsinlt tolerant mechanisms
(i.e., retry, alternate resource) focus on evaluating &t ftolerant mechanism using
standard metrics to produce failure cases at a certairaarate [(Hwang and Kessel-
man, 2003), (Duda, 1983), (Beguelin et al., 1997)]. Somehefdtandard metrics
include:

1. The Mean Time Between Failures (MTBF) measures the agenagunt of time
between failures.

2. Mean Time to Failure (MTTF), is the average time betwegaaant arrivals of
failures.

3. Mean Time To Repair (MTTR), is the time taken to repair &ufai.

4. Probability of failure on demand (POFOD), is the posgibthat the system will
fail when a user requests service.

The conceptual framework within which such metrics are @pple is somewhat
different to our own. Essentially, in our scenario, in salledy terms, the extreme
case is that a single surviving processor could re-exetigteentire application from
scratch - there is no concept, for example, of tying res@aiareactions to specific
locations. Thus, in effect failure only occurs when the mentesource pool closes
down. From another perspective, it could be argued that ppraach might be very
vulnerable to failure, depending upon the detailed mecmanised to gather resource
information. However this presents an implementationlengle independent of the
scheduling actually done with the information. We have ritdérapted to extend our
model to encompass these more conventional aspects otdéardance.

4.5 The Simgrid Software

Our evaluation is conducted by simulation, since this aflag to generate repeat-
able patterns of resource performance variation. In thitiae we describe the steps
taken in our simulation to model our distinctive simulatsrenarios described above,
in which resources vary their performance characterigtigailability and bandwidth)
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over time during the execution of some particular applaatiFor this, we use the Sim-
grid (Grid Simulator) software version 2.8, described aond/dloadable from [(Sim-
grid, 2001)], as a grid simulation platform. Simgrid proggia set of core abstractions
and functionalities that can be used to build simulatorsgarcific application domains
and/or computing environment topologies. In the literat8imgrid has already been
widely used by different researchers [(Hernandez and #)87a), (Legrand et al.,
2003), (Beaumont et al., 2002), (Beaumont et al., 2003gr¢Ran et al., 2002), (Her-
nandez and Cole, 2007c)]. Simgrid assumes that resourcestiva performance
characteristicslatencyin time units to access the resource aaavice ratewhich is
the number of work units performed per time unit. Simgrid glmentation suggests a
pair of mechanisms to evaluate performance characteyisticas constants, in which
the initial value defining the performance characteristithe resource (availability or
bandwidth) remains constant during the execution, and kaass (dynamic events).
Traces allow us to model changes in resource performangacteastics over time,
such as the ones observable for real dynamic resources dodifg our notion of
simulation scenarios described above.

Early experiments, modelling resources with constantattaristics and static schedul-
ing, proved successful. However, when evaluating our dyoaanodels according to
the characteristics of our scenarios described in Sectid) id which we consider
variations in resources characteristics over time, we tiaethe Simgrid mechanism
using traces did not behave according to our expectatianaddress this problem, we
designed the tracking mechanism which was built on top ofSinegrid software, to
obtain the notion of more realistic dynamic scenarios velhg to have a sequence of
events, each simulating a fluctuation in resource perfoomairing execution.

4.6 The Tracking Mechanism

In keeping with the principles of our planned scenarios,tcacking mechanism sup-
ports a sequence of chronological events (&4, eV, eV2, etc.) over time, each simu-
lating a resource change in either processor or bandwidtiedility. Our mechanism
works on the principle that the problem of including tracdgnamic events) during
the execution of the application, can be represented asueseg of evaluations with
constant performance characteristics. The mechanismeaedn as a lower-level cy-
cle, iterating at each event, which we called tracking poirite mechanism manages
the notion of a virtual clock during the execution, such tias able to distinguish
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the time at which each event (tracking point) occurs and #tezach tracking point,
reflects the change(s) in the respective resource(s), batlhe subsequent execution
of the remaining tasks will now reflect such changes, ob\woaffecting the execution
time of those tasks mapped onto the processors involveeiewénts. Thus, the track-
ing mechanism gives the impression that the applicatiomesed in more realistic
scenarios. To achieve this, the tracking mechanism muginpethe following actions
at each tracking point,

[ —

. Update the progress of the tasks in 81eGstructure.

N

. Update the current schedule with the progress of tasks.

w

. Update the change in the performancéTli for each resource involved.

I

. Update the virtual clock to the time at which the event oscu

Now, after performing the above operations, the next stép évaluate the current
updated schedule until the next planned event or until tpéegiion finishes execution
(i.e., no more events). The tracking mechanism seeks t@agtee that the sequence of
events, each simulating a resource change in either pramomsisandwidth availability,
will occur at their planned time, affecting the executioméi of those tasks mapped
onto the respective processor. In our context, the maiemdiffce between rescheduling
and tracking points, is that the iterations caused by thateygracking points) do not
perform rescheduling of the application (as in reschedupnoints), they just reflect
the changes in the resource characteristics such that #reyoe considered in the
subsequent simulation.

To illustrate the tracking mechanism, consider Figure A.@&/hich we observe a
sequence of chronological dynamic events (traces), eanhating a resource change
(i.e.,eMl, eM?, eM3, etc) and indicating a tracking point . We recall that theiniation
about the initial performance (availability or bandwiditistored in th&SRPstructure.
Then, as the execution starts, the resources take into actimiinitial performance.
We observe that the tracking mechanism must recognizerttesdt which every trace
(events) occurs in chronological order. Thus, following #xample, the first evalua-
tion (iteration) performed by the tracking mechanism isipened fromt = 0 to e\}ll
at which a change in the performance mf occurs, then at this tracking point, the
mechanism must reflect the change and perform the operatafited above so that
the subsequent execution of the remaining tasks reflectshieges. Thus, we ob-
serve that this event occurs whenis being executing o1, then after reflecting the
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Figure 4.6: The Tracking Mechanism

change ofpy, the remaining work of1 on p; will be performed subject to the new per-
formance ofp;. The virtual clock is updated tg. The performance gb; will remain
constant untilevy which is the next event involving;. After e\}ll, the next tracking
point occurs ae\}z2 involving the processopy, thus the next evaluation is performed
from the current virtual time; to ty, in the same manner, the changeppnwill be re-
flected in the subsequent execution following the procedfitbe mechanism. Thus,
the mechanism continues until the application finishes @i@t.

4.7 Summary

In this chapter we described all the components involvetiérsimulation framework.
The evaluation of our reactive scheduling mechanisms islected by simulation,
since this allows us to generate repeatable patterns afires@erformance variation.
We described the source and characteristics of the Inplt Gagphs (ITGs) used in
the evaluation. Next, considering the dynamic nature of SH@e described the dis-
tinguishing characteristics of our simulation scenariée.explained the criterion used
to define the fixed rescheduling points used to reschedubgablecation, followed by a
description of the metrics used to evaluate the performahoer models. Finally, we
described the extended version of the Simgrid softwareckvhilows changes in re-
source performance characteristics over time, as obslerirabeal dynamic resources.



Chapter 5
Experimental Results

In Chapter 3 we defined th@ TP model, which allows rescheduling and migration
of tasks in response to significant variations in resouraattteristics. In the same
chapter, we defined th&TP/c model, an extended version &T P that considers
the maintenance of a collection of reusable copies of thdteesf completed tasks to
improve the utilization of resources and to minimize the atipof the migration cost
on the application makespan. Finally, we defined the rewimanechanism to pre-
serve the execution of the application despite the preseffedure in resources. The
rewinding mechanism was integrated into G€&PandGT P/c models, resulting in the
extended version&T P/r andGT P/c/r respectively. In this chapter we evaluate the
performance of the models by using the metrics defined fdn eaadel in Section 4.4,
averaged over all the graphs under consideration. Our atrahuis conducted by sim-
ulation, since this allows us to generate repeatable pattef resource performance
variation. To achieve this, we will use a collection of DAGwlaa number of test sce-
narios. A scenario involves a sequence of randomly definetrépeatable) events,
each simulating a resource change in either processor aiwbdth availability. We
used the Simgrid software [(Simgrid, 2001)], which we hadaed to support the
variability in resources, as described, in Section 4.5.

5.1 Structuring the Experimental Results

We have structured our observations based on the expeahrasults as shown in
Figure 5.1. We start by analyzing the behavior of the statpping methods (i.e.,
HEFT and DLS) evaluated on our simulation scenarios. Thencentinue with the
analysis of the performance of ti&T P reactive mapping method, which considers

73
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the cyclic use of a mapping method over time, in responsetiahidity in resources.
Then, we analyze the results GfT P/c, describing the impact on makespan when it
uses reusable copies for scheduling tasks onto processors,

The Problem with Static
Mapping Methods on SHCS

A

Factors affecting the predictiong
of Static Schedules

'

Reactive Scheduling of DAG
applications on SHCS

'

Reactive Scheduling with

Copying and Migration

, 1
Impact of the freql.Jenc.y of the Rethinking DAG applications
Rescheduling Points in the for SHCS
Makespan

¢ |

Reliable Task Scheduling

with Rewinding and Migration

Figure 5.1: Structure of the experimental results obtained in our research

After this, we describe a pair of issues related to the peréorce of the reactive
mapping methods: The first issue concerns the length of g#eheeluling cycle. The
second issue concerns the data flow mechanism among thetaskesing the appli-
cation. Finally, we present the results of the rewinding hagism included il T P/r
andGTP/c/r.

We recall that in SHCS the availability and performance ahpatational resources
can vary dynamically over time, even during the course ofxatetion. Thus, in or-
der to have a more realistic simulation environment, weudet into our scenarios
events, which simulate a change in the performance of theures (availability or
bandwidth). As described in Section 4.3, our scenarios istenduished by the bound
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placed on the maximum variation allowed in one event, exga@ss a percentage of
the peak performance of a resource. For example, in the soemi#h a bound of 30%,
any one event can cause the availability of a processor t@dse to no less than 70%
of its peak performance, or of a link to decrease to no less @6 of its maximum
bandwidth. We consider a bound ranging from 0% to 90% in imenets of 10%. We
notice that scenarios with a bound of 0% are a special cas@ichwesources remain
fully available over the execution of the application. Teignario is more suitable for
static mapping methods generating static schedules.

The graphics used in this section to present the resultseoetaluation are distin-
guished by showing the whole spectrum of bounds for eachesiceWe will refer to

a particular scenario &8CHEX,y, z), which means that the scenario usgeocessors,
y tasks ana percent of variability in computational resources.

5.2 The Problem with Static Mapping Methodson  SHCS

In Section 2.6, we mentioned that when evaluating a scheafudéeparticular DAG
application on SHCS, we may consider whether to use statppimg methods or to
consider reactive mapping methods suclksad, which iteratively compute improved
schedules over time. In this section, we intend to exploeepifoblem and to under-
stand the behavior of static mapping methods when they aeuéad on SHCS. We
first start by describing the performance of static mappirhods, which obtain an
initial schedule and launch the schedule onto the targé¢syé.e., SHCS) under the
assumption that resources are dedicated and unchangingroee To achieve this, we
sought in the literature some computationally low-codtistaapping methods, which
were capable of addressing heterogeneous resources ahgtjprg good solutions in a
reasonable amount of time. Thus, we selected the Heterogsiiarliest Finish Time
(HEFT) [(Topcuoglu, 2002)] and the Dynamic Level SchedyibLS) [(Sih and Lee,
1993)]. The HEFT algorithm might be one of the most frequergferred to listing
static mapping methods. For instance, it is evaluated ing¢@brek et al., 2005)] and
compared with a genetic algorithm and a myopic algorithme &kperimental results
show that HEFT outperformed the other algorithms. On themftand, the DLS al-
gorithm is one of the earliest algorithms to consider hajeneous processors. It is
also referred by many researchers. In [(Jarry et al., 20008 evaluated and com-
pared with the Dynamic critical-path algorithm (DCP) [(Kkvand Ahmad, 1996)].
The results show that DLS outperformed DCP when the fluainatin the variability
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of resources increased considerably.

We proceed to evaluate both static mapping algorithms bhygustheduling scenarios
for DAGs with CCR = 1.5 and the average of the NSLs of all thephgaunder con-

sideration. We will refer to the difference between the agerof the estimated NSLs,
which consider the estimated initial makespan, and theagesof the real NSLs, which
consider the real final makespan, as the NSL gap.

Then, to describe the experimental results concerning stetpping methods with
static schedules on SHCS, we divide our observations in tam rparts. The first
part shows the results of both HEFT and DLS 8EHEX,y,0), (0% of variability in
resources, considered as suitable for static mapping msth®he second part shows
the results forSCEX,y,z) where 10< z < 90 describes the percentage of variation
among resources, as more realistic scenarios.

1. In Figure 5.2 we can observe the performance results fdFH&nd DLS for
each scenari®CEX,y,0). Our first observation is that the estimated (initial)
average NSL for both is similar. In terms of the final averagd NHEFT tends
to have a better performance than DLS, patrticularly in trexsanarios with 10
and 20 processors. For instance S6E10,10000) HEFT outperforms DLS
by 11% andSCHE20,300,0) by 16%. For those scenarios with 5 processors,
DLS tends to outperform HEFT by up to 9%. In general terms HBETper-
forms DLS, having best performance when the number of taskegases (500
and 1000 tasks).

Considering the NSL gap, this tends to be quite high, eveargilie static na-
ture of resources in this sort of scenarios. For scenaritis Mmited number of
resources (5 Processors), the NSL gap tends to be higheg gedually incre-
mented as the application becomes larger and complex (300@G00 tasks). As
we increase the number of processors, the NSL gap decréasesyer it main-
tains the gradual increase for larger DAGs. For instanageS€@E5,100Q 0) the
NSL gap for HEFT is up to 22 times the estimated average NSLugnth 23
times for DLS. If we increase the number of processors, theS8€H 10,1000 0)
the NSL gap is up to 12 times the estimated average NSL for H&feTup to
13 times for DLS. This means that apart from the argumentrésdurces may
vary over time, static mapping methods producing statiedates are affected
by some factors that may negatively affect the performarideeapplication,
increasing the gap between the real and predicted makebkptie next section
we describe some observations about such factors.
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Figure 5.2: Average NSL of the static mapping methods HEFT and DLS

2. Ingeneral terms, in more realistic scenarios which ideluariations in resources
ranging from 10% to 90%, we observe that HEFT tends to be rtbize DLS,
in most cases up to 20% with few exceptions. We can see for szetario in
Figure 5.2 a steady increase in the final average NSL of thicagipn, increas-
ing the NSL gap when the variability in resources increa$éss means that the
initial predictions of those DAG applications executedhnstatic schedules are
affected over time by the dynamic nature of SHCS, affectimgderformance of
the application by increasing the final average NSL of thdiegion.

The initial predictions made by the static mapping methodk static schedules
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are affected over time by external and internal factors. Werefer to as external
factors those factors outside the scope of the scheduliogidas but affecting the
predictions of the candidate schedule. Thus, we identify éxternal factors: the
variability in resources and the communication model antaisgs (PULL and PUSH
models). We found that the external factors related to thialaity of resources, may
negatively affect the performance of the application byeasing the final makespan
of the application. In Section 5.7, we will show how the conmication model may
affect the application performance. We will refer to as int# factors those related
with the scheduling decisions affecting the predictiorfieoted in the schedule to be
launched to SHCS. This was observed when the static scledele evaluated on
scenarios with dedicated and unchanging resources over tim

5.3 Factors affecting the predictions of static sched-

ules

As we described in Section 5.2, there are internal and eattéawtors, which may af-
fect the initial predictions of static schedules duringétecution process. We demon-
strated that the external factors, related to variationgesources, affect the initial
predictions by increasing the final makespan of the apptinatin this section we
enumerate some internal factors that we believe are retat¢ke performance ob-
served for the application using HEFT and DLS (and probabitgostatic approaches
in the literature), particularly when we conducted the ekpents for perfect (z=0)
resources.

We argue that the internal factors are linked to the distongtion of SHCS used by
the static methods when scheduling decisions. This meatstheduling decisions
are based on the notion of unrealistic SHCS architecturesnwime prediction cost is
computed, mainly to keep the simplicity of the models. Wecdbs below some of
the unrealistic notions considered during schedulinggiecs,

1. Ignoring traffic contentiorby assuming an infinite bandwidth between a pair of
processors when the prediction cost is calculated. Thismof SHCS may lead
to poor estimated schedules because the predicted timartsfér data among
tasks may be shorter than the real time. This is illustratethe example of
Figure 5.3 where we follow the steps of the HEFT algorithm. n€§ider the
task graph (Figure 5.3(a)), the heterogeneous informdttagure 5.3(b)) and
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Figure 5.3: Example of a distorted notion of SHCS architectures

the SHCS architecture (Figure 5.3(c)). The order in whidksawill be mapped

is based on the upward rankRy) showed in Figure 5.3(c) which gives the se-
quence{vo,v1,V2,v3}. Thus, Figure 5.3(d) shows the initial schedule generated
by the HEFT algorithm. We can observe in Figure 5.3(e), thetGahart gen-
erated for the initial schedule in which we observe that HEgflores traffic
contention by assuming an infinite bandwidth for timk(p1, p2). Thus, the es-
timated makespan was computed to be 10 units of time. Howeysequencing
the data transfers dink(pz, p2), it will actually take 12 units of time, 2 units of
time more than the estimated makespan.

. Fully connected networkassume that there always exists a link to data trans-

fer between each pair of processors, when it can be comyldiétrent in real
SHCS environments. For our purposes, we consider in our lR@EP and
GT P/cthat the processors composing the target architecturelbyebnnected.
However, such assumption may lead to poor predictions winengal target ar-
chitecture is not fully connected. For instance, when esiimg the communica-
tion cost to transfer data from a task mapped to a procgssand a succeeding
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task mapped to a different processmy; such that there is not communication
link betweenp,, and pp,.

We believe that to increase the performance of the appticatiew efforts are re-
quired in designing static mapping methods to address thenal factors. In [(Sinnen
et al., 2006), (Sinnen and Sousa, 2005), (Agarwal et al.6800is observed that in-
cluding traffic contention into the scheduling decisiongynmprove the predictions
of the generated schedules. Obviously, the inclusion df $echniques increases the
complexity of the algorithm.

The other option, which we seek to address in this work, usastive mapping meth-
ods such a&T P, which iteratively compute improved static schedules divee and
are able to react to the dynamic nature of SHCS (externadfslctHowever, the prob-
lem of the internal factors may remain if they rely on distorhotions of SHCS.

5.4 Reactive Scheduling of DAG Applications on SHCS

First, we notice that the cost prediction for tle& P model is based upon redefini-
tion of concepts drawn from the standard scheduling liteeaf(Kwok and Ahmad,
1999a), (Topcuoglu, 2002)], together with some additiaparations required by the
dynamically heterogeneous nature of our target system. céj&sT P includes the
same distorted notion of SHCS described in the previous@eb6t3 when the predic-
tion cost is calculated. In this section we evaluate thegperance of th&s T Pmethod
on SHCS. To achieve this, we benchm@&T%K P against a pair of algorithms described
in Chapter 2.5, the Heterogeneous Earliest Finish Time (HEHopcuoglu, 2002)]
which considers a static schedule approach Bh8/sr, a reactive mapping method
described in Section 2.6. We recall thaitS/sr evaluates two different metrics for the
selective rescheduling policy: the spare time and the idaknode. For our purposes,
we selected the spare time of tasks, which denotes the mbtimethat a particular
predecessor node can execute without affecting the stagtdf some of its dependent
nodes that are either connected by an edge in the DAG or aseedjin the execution
order of the assigned machine. We notice thatS/sr includes a migration model
similar that of GT P, in which migration of tasks may be invoked when the cost ef th
migration itself is outweighed by the global time saved du@xecution at the new
site. In the same manner, a pessimistic model is consideradhich the migrated task
must be restarted from the very beginning, including regaitiy all inputs directly
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from the predecessors.

As part of the assessment, we are interested in two issues.firBhissue concerns
the results of the benchmark of the mapping methods and twsdeconcerns the ef-
fect of traffic contention on scheduling decisions invotyimeterogeneous resources
with changeable capabilities over time. To achieve this,wileuse three different
scheduling scenarios varying the communication to contjmutaatio (CCR) as 0.1,
0.5 and 1.5. The assessment of the results will be based ondtres defined in Sec-
tion 3.2. We proceed to describe the experimental resultgdyping our observations
in two main groups. The first group benchmarks reactive nrappiethods@T Pand
DLS/sr) against static mapping methoddEFT). In this group, we will divide our
observation in two main parts. The first part relates to seesavhich assume that re-
sources are unchangi®CEXx,y,0) and the second part to scenarios W88 EX, Y, 2)
where 10< z < 90 describes the percentage of variation among resoursasoee
realistic scenarios. The second group describes indiVrésalts for the reactive map-
ping methodsGT P againstDLS/sr. For convenience, this also includes results for
GT P/c. We will discuss the introduction & T P/cin a later section.

5.4.1 Scheduling Scenario for CCR = 0.1 and infinite bandwidt  h

We recall that the task computation times for a particulak tg were created for each
processor using uniformly distributed random numbers fitbi@ interval [1 to 10].
We start our evaluation by considering DAGs with CCR=0.1 arfichite bandwidth.
Intuitively, the scheduling decisions must not be affedigdhe traffic contention.

1. Static Mapping Methods against Reactive Mapping Methods

e We observe in Figure 5.4 showing the average NSL, that forctHse in
which scenarios include 0% of variabilitd EF T, GT PandDLS/sr present
similar performance. The experimental results do not ideatclear ten-
dency to determine the mapping method with the best perfocema For
this class of scenario, we observe that discrepancies batveal and pre-
dicted estimations are low.

e For more SHCS-like scenarios, we observe that the averagddMBIEFT,
tends to gradually increase as the variability increasesertihanGT Pand
DLS/sr. Thisis observed in those scenarios with 5 and 10 processbhesn
the DAGs become larger and complex (500 and 1000 tasks). riéans
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that the variability of resources tend to affé¢dEFT more thanGT P and

DLS/sr (Figure 5.4). For instance, in scenarios with 80% of vafiphi
the average NSL for HEFT is up to 15% higher ti@m P and up to 17%
higher thanDLS/sr. The reactive strategy allowe@dT P and DLS/sr to

react more efficiently to external factors such as resouacalbility.

2. Evaluation of Reactive Strategies
The experimental results show ti&T Ppresents a similar performance@a S/sr
in many cases. We believe that the characteristics of teisas@ contribute with
more accurate predictions, as the impact of the traffic eume on the schedul-
ing decision is practically null. It is observed in Figurel 3hatDLS/sr outper-
forms GT P for scenarios with 5 processors, BT P outperformsDLS/sr for
scenarios with 20 processors. Complementary informatimws thatDLS/sr
required a similar number of remappings th@am P (Figure 5.5) for DAGs with
relatively few tasks (50 and 100 tasks). However, as the murabtasks in-
creases, the number of remappings increaseBEkS/sr. For instance, the ex-
perimental results foSCE 10,500 40) indicate thatDLS/sr required 5 times
more remappings thaBT Pand forSCH10,100Q 40), it required 7 times more
remappings.

In general terms, for these particular scenarios, wheréanewidth is infinite, the
problem of traffic contention tend to be null. We believe ttias contributes to the
more accurate estimations.

5.4.2 Scheduling Scenario with CCR = 0.5 and variable bandwi  dth

This scenario uses the same computation times, CCR = 0.5hamdjing bandwidth
over time, with the maximum bandwidth equal to one unit ofadaér unit of time.
Now, by increasing the communication cost, we explore thpaich on scheduling
decisions when the bandwidth is finite.

1. Static Mapping Methods against Reactive Mapping Methods

e For scenarios with 0% of variability, we observe in Figuré that in most
casesGTPtends to outperform HEFT, mainly as the number of tasks in-
creases (300,500 or 1000 tasks). For instanc&GiH20,300,0), GTP
outperforms HEFT by 5% and fd8CE20,100Q0), GT P outperforms



84

Average NSL

Average NSL

Average NSL

Average NSL

Average NSL

SCE(5 Processors, 50 Tasks)

0.47 = = = e e e =
HEFT ——
GTP/c
GTP
0.465 |- DLS/st 4
046 g
0.455 |- 4
045 - 4
0.445 |- 4
0.44
0.435 . . . . . . . .
4 10 20 30 40 50 60 70 80 %
9% of Variability in resources
SCE(5 Processors, 300 Tasks)
064 T T T T T T T T
HEFT —+—
GTP \- % |
DLS/st \&
o a o a
05 !
B @ B o
0.48 4
046 . . . . . . . .
0 10 20 30 40 50 60 70 80
9% of Variability in resources
SCE(5 Processors, 1000 Tasks)
1.05

0.9

0.8

e
DLS/sr @ |

0.235

0.225

0.215

0.205
0

10 20 30 40 50 60
% of Variability in resources

SCE(10 Processors, 100 Tasks)

GTP -~
DLS/sr a8

10 20 30 40 50 60
% of Variability in resources

SCE(10 Processors, 500 Tasks)

70

80 90

0.209

0.208

0.207

0.206

0.205

0.204

0.203

0.202

0.201

& # # - - -

GTP ---%---
DLS/sr &

10 20 30 40 50 60

9% of Variability in resources

70

80 90

Average NSL

Average NSL

Average NSL

Average NSL

Average NSL

Chapter 5. Experimental Results

SCE(5 Processors, 100 Tasks)

0.405 T T T T T
HEFT —+—
GTP/c -

GTP
DLS/sr
0.4
0.395 - —
0.39 |

0.385

0.375 L L
0 10 20

30 40 50 60 70 80
9% of Variability in resources

SCE(5 Processors, 500 Tasks)

DLS/sr

o = a 4
052 . . . . . . . .
0 10 20 30 40 50 60 70 80
% of Variability in resources
SCE(10 Processors, 50 Tasks)
03 o o o = = = vy
HEFT —+—
GTP/c
GTP ¥
0.205 - DLS/sr - 7
0.29 —
0.285 - 4
0.28 —
0.275 - 4
0.27
0.265 - 4
0.26 , , , , , , , ,
0 10 20 30 40 50 60 70 80
% of Variability in resources
SCE(10 Processors, 300 Tasks)
0.2225 T T T T T
HEFT —+—
GTP/c -
0.222 | GTP -
DLS/sr a8
0.2215 —
0.221 4
0.2205 - 4
0.22
0.2195 - 4
0.219 4
0.2185 |- 4
0.218 4
0.2175 . . . . . . . .
0 10 20 30 40 50 60 70 80 %
% of Variability in resources
SCE(10 Processors, 1000 Tasks)
0.32 T T T T T T T T
HEFT —+—
GTPIc -
GTP
0315 - DLS/sr 1
031 | 4
0.305 |- —
03
0.295 |- —
0.29 -
0.285 |- —
0.28 . . . . . . . .
10 20 30 40 50 60 70 80 %

9% of Variability in resources



5.4. Reactive Scheduling of DAG Applications on SHCS

Average NSL

Average NSL

0.275 - 0.19 @ @ @ ?
HEFT —— HEFT ——
GTP/c ---x--- GTP/c ---x---
027 GTR % 0.188 - GTP ¥
DLS/st & DLS/sr &
0.265 0.186 |-
0.184 -
0.26
, 0182 -
0.255 z
® 018
g
0.25 o
< 0178
0.245
0.176 |-
024 0.174 -
0.235 0172 -
023 % % % % % % * * 017 % % % % % % *
10 20 30 40 50 60 70 80 % 0 10 20 30 40 50 60 70 80 %
% of Variability in resources % of Variability in resources
SCE(20 Processors, 300 Tasks) SCE(20 Processors, 500 Tasks)
0132 - 0.12 @ @ ! o
HEFT —— HEFT ——
GTP/c --x-- GTP/C —-x-—-
GTP %~ 0.119 GTP %
013 DLS/sf. DLS/sr &
0.118
0128 |- 0117
0.116
0.126 | @
2 o115
°
g oma
0.124 - 2
z
0.113
0122 - 0112
0.111
012
011
0.118 . . . . . . . . 0.109 . . . . . . .
0 10 20 30 40 50 60 70 80 %0 10 20 30 40 50 60 70 80 %
% of Variability in resources 9% of Variability in resources
SCE(20 Processors, 1000 Tasks)
0.1315 -
HEFT ——
GTP/c —-x-—-
GTP ¥
DLS/sr &
0.131 4
0.1305
o
?
z
S 013
4
]
g
<
0.1295 -
0.129
0.1285 - -
0 10 20 30 40 50 60 70 80 %0

SCE(20 Processors, 50 Tasks)

SCE(20 Processors, 100 Tasks)

85

bandwidth

9% of Variability in resources

Figure 5.4: Average NSL for GTP, GTP/c and DLS/sr when CCR=0.1 and infinite

HEFT by 4%. Additionally, we observe that HEFT outperfor®isS/sr
in some cases. Considering the same scenari@®CHE20,300,0), HEFT
outperformsDLS/sr by 6% and forSCE20,100Q 0) by 1%.

For more SHCS-like scenario§T P outperformsHEFT in most of the

cases.DLS/sr outperformsHEFT in some cases, particulary when the

variability in computational resources is greater than 20oFigure 5.6,

we can observe that the average NSL for HEFT, tends to grigdnatease

as the variability increases, more than the reactive mapmiethod<GT P

andDLS/sr. This means that the internal (traffic contention) and edkr
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Figure 5.5: Average Remappings for GTP, GT P/c and DLS/sr when CCR=0.1 and
infinite bandwidth

(resource variability) factors affect the initial estinoats of the static ap-
proachHEFT more than the reactive approach®$ P andDLS/sr. For
instance, in scenarios with 70% of variability, the averbi@ for HEFT is
up to 0.53 times higher thaBT Pand up to 0.60 higher thabLS/sr. The
reactive strategy allowe@T PandDLS/sr to refine the initial predictions
considering the dynamic changes in resources over timetschedul-

ing decisions, addressing more efficiently the resourcialvdity (external

factors). However, the strategy of rescheduling the appba tends to in-

crease the overhead cost. This can be observed in FigureBich shows
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the overhead cost.

2. Evaluation of Reactive Strategies
The experimental results (Figure 5.6) show that, comparik the previous
scenario where CCR=0.1 and infinite bandwid87, P outperformsDLS/sr in
most cases. For instance, in Figure 5.10, we observe th&Gd&5,100Q 60),
GT P outperformedDLS/sr by an average of 9% in terms of the average NSL,
requiring an average of 10 remappings (see Figure 5.11) amderage of 700
migrated tasks (see Figure 5.12). On the other h&ids/sr required an av-
erage of 300 remappings and an average of 2000 migrated @esksrating 4
times more overhead cost (recomputation and retransig)ttiman GT P (see
Figure 5.13). We believe that the performanceDafS/sr was more affected
thanGT Pin the presence of traffic contention. In the next scenarionesease
the CCR to 1.5 and maintain the bandwidth in one unit of dataip# of time,
expecting to increase the traffic contention during execulti

We believe that, as the traffic contention increases, theajiancies between real
and predicted estimations increase. In general termstiveanapping methods ad-
dressed more efficiently the internal (i.e.,traffic coni@mtand external (i.e.,variability)
factors , showing in most cases, a better performance tleastétic approach.

5.4.3 Scheduling Scenario with CCR = 1.5 and variable bandwi  dth

In this scenario, we keep the same computation times andithe sharacteristics for
bandwidth. However, we increase the communication cosbbgidering CCR = 1.5.

1. Static Mapping Methods against Reactive Mapping Methods

e The case in which scenarios include 0% of variability allavgsto inves-
tigate the extent which emerging discrepancies betwedmnebpredicted
behavior are handled bTP. We observe that as the communication
cost increases, the traffic contention increases, inacrgasie discrepan-
cies between the predicted and real estimations. Thus,ignstienario,
the performance of HEFT is more negatively affected tharha girevi-
ous scenarios. We observe in Figure 5.10 that in most da3d3tends
to outperform HEFT, mainly as the number of tasks increa3@8,600 or
1000 tasks). For instance, 8CE20,500,0), GT P outperforms HEFT by
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Figure 5.6: Average NSL for GTP, GTP/c and DLS/sr when CCR=0.5 and variable
bandwidth

9% and forSCH 20,1000 0) which increases the number of tasks] P
outperforms HEFT by 13%. Complementary information shoka for
SCH20,500,0), GTP needed an average of 9 remappings (Figure 5.11)
and an average of 380 migrated tasks (Figure 5.12). In the saamner,
DLS/sr tends to outperform HEFT in most cases. The best performance
for DLS/sr is for SCE10,100Q0), whereDLS/sr outperforms HEFT by
4%, requiring an average of 300 remappings and 1400 migtaséd. This
means thaGT PandDLS/sr, at each RP, reacted to inaccurate estimation
(caused mainly by the internal factors) in the previous dokeand ob-
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Figure 5.7: Average Remappings for GTP, GT P/c and DLS/sr when CCR=0.5 and

variable bandwidth

tained a refined schedule considering the progress of thiécappn on

unchanging environments, which increased the performahtee appli-

cation compared wittlEFT. Obviously, the decision to migrate a placed

task will incur migration cost because retransmission ¢ddaneeded.

For more SHCS-like scenario§T P and DLS/sr outperformHEFT in

most of the cases. In Figure 5.10, we can observe that fdi@al¢enarios,

the average NSL for HEFT, tends to increase considerablypeoed with

the previous scenarios. This tendency is gradually increetemore than

GTP andDLS/sr, as the variability increases. Thus, in scenarios with
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Figure 5.8: Average Migrated Tasks for GT P, GT P/c and DLS/sr when CCR=0.5 and

variable bandwidth

90% of variability, the NSL for HEFT is up to 2.3 times highbahGT P
and up to 2.6 times higher thdDLS/sr. The reactive strategy allowed
GTPandDLS/sr to react more efficiently to resource variability (external
factors) and traffic contention (internal factors). Howevtke pessimistic
model used, in which the migrated task must be restarted fremvery
beginning, including regathering all inputs directly frahe predecessors,
tends to increase the overhead cost, lengthening the makesp

2. Evaluation of Reactive Strategies
The experimental results show tiaT PoutperformaDLS/srin most cases. We
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Figure 5.9: Average Overhead Cost for GT P, GT P/c and DLS/sr when CCR=0.5 and
variable bandwidth

can see in Figure 5.10, that those cases in wBEB/sr outperformsGTPin
terms of the average NSL, mainly involve scenarios with avawability in re-
sources and DAGs applications with relatively few tasksgb@ 100 tasks). For
instance SCHE5, 100,10) shows that the average NSL for DLS/sr is up to 7%
less than the average NSL f&T P. By observing the experimental results ob-
tained in the scheduling scenarios, we observe@®@7al outperformsDLS/sr in
most cases. We believe that there are two main contribusicipfs: a) The first
factor concerns the prediction of the spare time of taskschvimay be affected
by the external and internal factors described previousty.instance, ignoring
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traffic contention in the prediction of the spare time of &asKkhis can be seen
in the first scheduling scenario where the traffic contentas practically null.

In this scenario we observed that the performand®@DPandDLS/sr was sim-
ilar. However, as the communication cost was graduallyeased in the next
scheduling scenario§T P outperformedLS/sr in most cases. b) The second
factor concerns the criterion to apply the selective redahieg policy consid-
ered in our benchmark, which dictates that the spare timasifstare evaluated
when a task finishes execution. Thus, the combination of faattors will di-
rectly affect the performance @LS/sr, which will affect the accuracy of the
spare time of tasks. As a consequence, the number of redetgedaints will in-
crease, leading to more migrated tasks, leading to a higleghead which may
affect the final makespan of the application. We can obsédmnge in this sce-
nario, when the DAGs become larger and complex (300, 500 800 fasks).
For instance, in Figure 5.10, we observe that$@H 20,1000 40) GT P out-
performedDLS/sr by an average of 13%, requiring an average of 9 remappings
(see Figure 5.11) and an average of 620 migrated tasks (geeeF5.12). On
the other hand)LS/sr required an average of 60 remappings and an average of
1400 migrated tasks generating 60% more overhead costhifadation and re-
transmitting) tharGT P (see Figure 5.13). Another important issue that we will
explore in the Section 5.6, is related to the frequency otréiseheduling points
(RP’s), which may affect the final makespan. Intuitively,mpa&RP’s will in-
crease the overhead cost of the application, but very fews R allow internal
and external factors to negatively impact the makespan.

In general terms, the reactive mapping methods tend to hae¢ter performance
than those considering static schedules, in the presentaffié contention and re-
source variability. We observe that reactive approachlesvahe application to react
to both variability in resources and inaccurate estimaifsom previous schedules.
This means that, in some cases, reactive approaches maytmatéer performance
than static approaches even in environments with dedi@atddinchanging resources.
This is mainly observed when the number of tasks and datafeemis increased.

We note that the assignment policy used3m P, which allows a task to be mapped
onto that processor offering the minimum earliest finishetimmay contribute to the
relatively high number of migrated tasks, as it allows miigna of tasks even if the
predicted time saved is small. We believe that by improviregassignment policy, the
number of migrated tasks may reduce, thus increasing thecappn performance.
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Figure 5.10: Average NSL for GTP, GT P/c and DLS/sr when CCR=1.5 and variable
bandwidth

5.5 Reactive Scheduling with Copying and Migration

In this section we show and evaluate the performance refsultie GT P/c system,
an extended version of tH8T P system. WithGT P/c we observed that in an execu-
tion with relatively frequent migration, it may be that, oane, the results of some
task have been copied to several other nodes, and so a sehsetjgrated task may
have several possible sources for each of its inputs. Sorieesé copies may now be
more quickly accessible than the original, due to dynamitatians in communica-
tion capabilities. Thus, we first discuss the monitoring attedflow among tasks within
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Figure 5.11: Average Remappings for GT P, GT P/c and DLS/sr when CCR=1.5 and

variable bandwidth

the context ofGTPandGT P/c. The information monitored embraces the following
variables: TheTotal Data Transfers|e(i, j)| : & € E shows the average of the total
number of expected data transfers for each DAG applicatmsidered in our exper-
iments. TheData Transfers Usedex(i, j)| : & € E andk9(v;,vj) = 1 describes the
average of the numbers of data transfers which used baruweagiabilities to perform

the data transfer. Obviously, if we subtract thata Transfers Usedrom the To-

tal Data Transferave will obtain the average of thatra-processors Data Transfers

for which the communication cost is considered negligibldne Copies Generated
|Qk(e(vi,Vj)) : Qx € Q| represents the average number of copies generated durng ex
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Figure 5.12: Average Migrated Tasks for GTP, GT P/c and DLS/sr when CCR=1.5

and variable bandwidth

ecution as a consequence of the migration policy define@&fbP. We recall that a
particular edge may have several copies. Tupies Usedlescribes the average of
the copies that were used directly as an input for a partice(iaj). We notice that
thoseCopies Usedvhich used bandwidth capabilities are included in the s@ath
Transfers Used

To conduct our experiments, we will use the characteristi¢the second scenatrio,
for which CCR = 0.5 and changing bandwidth over time, withrtteximum bandwidth
eqgual to one unit of data per unit of time. In Figure 5.14 weenbs that a number of
copies were generated during execution as a result of theatiag policy defined for
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Figure 5.13: Average Overhead Cost for GTP, GTP/c and DLS/sr when CCR=1.5

and variable bandwidth

GTP. For instance, the average number of copies generate8CG& 5,300 30) is
317, representing 7% of the average of feeal Data Transfersand an average of
38 copies were used as direct input for some particular tasgsesenting 12% of the
number of the copies generated. Our experimental resutts it in general terms,
the average number of copies generated ranged from 5% to 2@8 average of the
total data transfers and the average number of copies usgdddrom 10% to 19% of
the average number of copies generated. The minimum valagdyntorrespond to
those applications with few tasks (50,100), increasingimge as the number of tasks
increases (300,500,1000). Despite the low percentageinumber of copies used as
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Figure 5.14: Average Data Transfers Monitoring

a direct input, this produces a significant improvement e plerformance of the ap-
plication. This can be seen in Figure 5.10, where we can s#&thP/c outperforms
HEFT,GTPandDLS/sr in most cases. Exceptions are limited to the use of DAGs
with few tasks (mainly 50 and 100 tasks) and low variabilityésourcesGT P/c has

a better performance particularly when the applicationobees larger and complex.
This is because, the number of copies will tend to increasttae migrated tasks will
have several possible sources to retrieve the informafitwmis, some reusable copies
will reduce the impact of migration on makespan by avoidingecessary data trans-
fer between tasks, and by exploiting the network link whiffiers the minimum data
transfer cost according to the latest performance resdanfoemation. For instance,
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in SCE10,100Q 30), the average NSL fo&T P/c outperforms HEFT by up to 16%,
GTPby up to 6% and DLS by up to 9%. For this scenario, we have arageeof
38749 expected data transfers, 28748 of the data transéeswged to transmit data
between a pair of tasks mapped on different processors, &3iés were generated
and 940 of the copies were used as a direct input, repregeli¥h of the copies gen-
erated. Furthermore, we observe that in some cases, thagavBilLS forGT P/c is
better tharGT P, however the number of migrated tasks tends to be highes1dP/c
than forGTP. We believe that this is because at some point of the exegutibere

a particularly high number of copies has been generated;dbieof migrating a task
is cheaper foGT P/c tending to increase the number of migrated tasks but notsaece
sarily the overhead cost. This can be seeS8@H 10,300, 20) where the average NSL
for GT P/cis better thaGT Pby up to 3%. However, the number of migrated tasks for
GTP/cis 4% higher tharGT P, but the overhead cost is 3% less ti@hP.

In general terms, the cyclic use of a mapping method can gemeeusable copies
which can be used as direct input for some succeeding tasiesrelisable copies can
reduce the impact of the overhead cost on makespan by agoiginecessary data
transfer between tasks, and exploiting more effectivedyrtatwork links. Obviously,
the benefit of reusable copies can not be exploited in stetiedules.

5.6 Impact of the frequency of the Rescheduling Points

in the Makespan

Our reactive mapping metho@T PandGT P/c, address the dynamic nature of SHCS
by allowing rescheduling of an executing application inp@sse to significant varia-
tions in resource characteristics. As we described in 8eati2, to perform our ex-
periments, we set a fixed-period rescheduling cycle at 10%etalue of the initial
makespan, for the whole spectrum of bounds for each scenérithis section we
intend to explore the impact on makespan when the numberseheeluling points
is varied. Intuitively, many RP’s will increase the overbezost of the application,
but very few RP’s will allow internal and external factors negatively impact the
makespan. To achieve this, we use the reactive mapping ch&fd on the third
scheduling scenario, which uses DAGs with CCR=1.5 and dhgrigandwidth over
time, with the maximum bandwidth equal to one unit of datayper of time. We eval-
uateGT P considering different lengths for the rescheduling poirtus, we consider
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Figure 5.15: Average NSL for the GTP/r and GT P/c/r System

fixed-period rescheduling cycles at 1%, 3%, 10% and 30% of/#hae of the initial
makespan.

Our experimental results show that, following our strated\setting a fixed-period
rescheduling cycle for the whole spectrum of bounds for esamario, it is not pos-
sible to distinguish a clear tendency to determine a fixedevédr the rescheduling
cycle. Instead, we observe that, the decision of setting#hee of the length of the
rescheduling point, may be linked to the variability of resmes. We observe this in
the three-dimensional graph in Figure 5.19, which showssdIP, the average NSL
for SCE, 300 0) and SCEx,1000 0) when the resource variability is equal to zero.
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Figure 5.16: Average Levels Rewound for the GT P/r and GT P/c/r System

The x-axis corresponds to the different rescheduling gaatl%, 3%, 10% and 30%
of the value of the initial makespan. The y-axis correspdodfie average NSL of
the application and the z-axis corresponds to the numberaafegsors (5,10 and 20
processors). Thus, we observe that as the number of redofgg@oints increases
(1%), the average NSL increases. For instanceStoE5,1000 0), the average NSL
when the rescheduling cycle is 1% is equal to 19.91, when 38gusl to 18.28, when
10% is equal to 18.57 and when 30% is equal to 18.39. This acoelan that many
short cycles may be inadequate when the fluctuations in thiebitity of resources are
minimum. Many short cycles may increase the number of megraasks, therefore
lengthening the makespan.
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Figure 5.17: Average Tasks Rewound for the GT P/r and GT P/c/r

On the other hand, in the three-dimensional graph in Figu28,5t is shown for
GTP, the average NSL foBCH5,300,z) and SCH?20,100Q z) when the resource
variability is high (70< z< 90). The x-axis corresponds to the different rescheduling
points at 1%, 3%, 10% and 30% of the value of the makespan. Exésycorresponds
to the average NSL of the application and the z-axis cormed®to the resource vari-
ability ranging from 70% to 90%. In this scenario, we obsdhat as the number of
rescheduling points increases (1%), the average NSL tentiscrease compared with
the other rescheduling points. For instance $@EK20,100,70), the average NSL
when the rescheduling cycle is 1% is equal to 3.07, when 3%usleo 4.55, when
10% is equal to 3.03 and when 30% is equal to 3.30. It could rtregtrmany short cy-
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cles may be required to react more efficiently to resourcebdity. Few long cycles
may not properly react to dynamic changes.

Remapping Points at (19,3%,10% and 30%) for 300 Tasks at ESCO Remapping Points at (19,3%,10% and 30%) for 5,10 and 20 PEs at ESCO

"300-CP-Esc0.dat" using 1:2.3 —— "1000-CP-Esc0.dat" using 1:2:3 ——

Figure 5.20: Average NSL for Scenarios with high variability

In general terms, the setting of rescheduling points is gromant element of re-
active mapping methods based on the cyclic use of a mappitigoche Considering
our experimental results, we believe that the strategy usedr experiments to eval-
uate the performance of the reactive mapping methods, widnkider a fixed-period
rescheduling cycle for the whole spectrum of bounds for esmgnario, may not be
adequate for extreme cases. New efforts are required ton@atithe frequency of the
rescheduling cycles. We believe that the observed vaitylnf resources can be a
parameter to determine the frequency of the rescheduliolg cy

5.7 Rethinking DAG Applications for SHCS

In previous literature, the relationship between the DAGI@ation (defined by the
owner of the DAG) and the scheduling mechanism (defined bgvimer of the method)
is not fully explored. Most mapping methods focus on schiedudtrategies which use
the shape and static information of the DAG. They do not aersihe mechanism
through which communication of task results is actuallyieetd. We have found that
ignoring this issue may negatively affect the performantcthe application. To ex-
plain this, we will use a hypothetical case shown in the Fega21. Figure 5.21(a)
describes a portion of some particular DAG application aigaife 5.21(b) shows the
schedule generated by the HEFT algorithm for the tasks shiowime partial DAG.

In such schedules we assume that the tasks are ordered iagctwdhe task ranks.
In keeping with the consistency of our formal definitions, wif use EST(vi, pj)
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andEFT(vi, pj) to denote the estimated earliest start time and earlieshfiine of
taskv; on processop; respectively. In the same manner, we will 88T(v;, pj) and
RFT(vi, pj) to denote the real start time and real finish time of tgsén processop;
respectively. In terms of the communication model amonigstase observe two main
models to allow the transfer of data among tasks R SHandPULL models.

Tasks Processor
to P1
t1 P1
t4 P2
t3 P3
t2 P2
t5 P3
t6 P2
tn P3
b) Schedule

a) DAG application

Figure 5.21: DAG application

1. The PUSH model, in which as soon as a task finishes execitjpushes the data
result to its successors to be executed. For instance, by tte HEFT schedule
from Figure 5.21, the computation of the estimated stare fion taski4 mapped
on pzis given by, E ST(t4, p2) = maxEF T(to, p1) +C(to, P1,t4, P2), EFT(t1, p1) +
C(t1, p1,ta, p2)). However, the real start time fo4 on p, when using the PUSH
model is,RST(t4, p2) = maxRFT(to, p1) + C(to, p1,ta, p2) + C(to, P1,t2, P2) +
C(to, p1,ts, p2), RFT(t1, p1) + C(t1, p1,t4,p2)). This means that in order to be
executedt, must wait untilt; pushes the data to those successors mapped in the
same processor anglpushes the remaining data needed4dpr execution.

2. The PULL model, in which as soon as a task is mapped on aplartipro-
cessor, it requests to pull the data needed from its prederes By using
the same example, now the computation of the estimatedtsteatfor taskt4
is given by ,EST(t4, p2) = maxEFT(to, p1) + C(to, p1,ta, p2), EFT(t1, p1) +
C(t1, p1,ts, p2)), and the real start time using the PULL modeR§T(t4, p2) =
maxRFT(to, p1) + C(to, p1,t4, p2), RFT(t1, p1) + C(t1, p1,ta, p2). This means
that for this model{4 will wait less time to be executed as it receives its inputs
just after its predecessai@ andt1 finish execution.
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Thus, the communication model among tasks is another ettictor which may
impact the makespan of the application. We believe that #stgd of DAG applica-
tions must be reconsidered when they are executed on dyreawilonments such as
SHCS. The notion behind this statement is that we obsenaddh our DAGs , the
nature of PULL models increases the performance of the egidn. We enumerate
below some of the ways in which PULL models may enhance thiempeance of the

application,

1. Data storage time refers to the waiting time that the dataains stored at some
particular processor before being used by some task. Dataleng waiting
times on resources may become unavailable in case of padesdsire or may
affect the predictions of tasks, increasing the number gjrated tasks. We
observe that the data storage time tends to be less for PUldelmthan PUSH
models. This can be observed in Figure 5.21 where, for theHP8del, the
data transfer for the edg@o,tn) is sent whertg finishes execution, even ff
executes much later.

2. Pulling data may allow data transfers to arrive at the s®uelatively close in
time such that the data storage time will tend to be shors, ihimportant be-
cause it may help to decrease the number of migrated taskdbe dynamic
nature of resources. When pushing data, the arrival of ddteeaource will be
more dispersed in time, as a consequence the data storagedird be longer
and the number of retransmissions may increase.

3. Long data storage time will require a major amount of ptgisstorage. We
notice that neitheGT P nor GT P/c make any attempt to optimize the physi-
cal data storage. Complementary work can be found in [(Rastalan et al.,
2007)], which considers physical data-storage conssaufien scheduling data
intensive applications.

In this context, we believe that for some DAGs, communicatimdels based on
the PULL model are more suitable for SHCS than the PUSH mdflelobserve that
the PULL model requires data to be stored for less time tharlPliSH model. To
support our statement, we designed some experiments tastadé the impact of
using the PUSH or PULL model with both dynamic and static nragp@pproaches.
We note that the experiments using the PULL model are the sxperiments used
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to evaluate the performance GfT PandGT P/c. We present the experimental results
below.

5.7.1 Evaluating the PUSH and PULL Models for Static Mapping
Methods

In this section we evaluate the PUSH and PULL models forcstagipping approaches.
To conduct our experiments, we will use the characteristitke second scenario, for
which CCR = 0.5 and changing bandwidth over time, with the imaxn bandwidth
equal to one unit of data per unit of time. We use the HEFT staapping method,
evaluated in our scenarios by using a version with the PUSHetrand another version
with the PULL model. In Figure 5.22 we present the resultslfdomprocessors. The
performance of the PULL model in most cases tends to be lh#rithe PUSH model,
particularly for DAGs with 500 and 1000 tasks. For instaniceSCHE10,500 40),
HEFT with the PULL model is up to 4.8% better than HEFT with idSH model
and inSCKE10,100Q 30) the performance increases up to 5.5%.

5.7.2 Evaluating the PUSH and PULL Model for Reactive Mappin g
Methods

In this section we evaluate the PUSH and PULL models for thetiee scheduling
mechanism&T P, GT P/c andDLS/sr and present the results of the evaluation using
our scenarios with 10 processors. We observe that the ingpasing PUSH or PULL
models in reactive scheduling approaches tends to be ngniisant.
The DLS/sr approach is the most affected by the mapping ndstewaluated. For
instance we observe in Figure 5.23 that 82K 10,100Q 10), the average NSL when
using the PUSH model is up to 8 times higher than when usin@thd. model. We
believe that the nature of the PUSH model combined with thermal and external
factors described in Section 5.3 will tend to negativelyeeffthe predictions of the
spare time of tasks. This can be observed in Figure 5.24 eniierobserve that for the
sameSCH 10,1000 10) the number of remappings increases up to 3 times, increasing
by up to 5 times the number of migrated tasks (see Figure au2&Yinally increasing
the overhead cost up to 7 times (see Figure 5.26). Thesesvédne to gradually
increase as the variability increases.

The GT Pmodel with PULL outperform&T Pwith PUSH. For the same scenario
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models
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SCH10,100Q 10), we observe in Figure 5.23 that the average NSL is up to 6.8gim
higher forGT Pwith PUSH. In Figure 5.24 it is observed tH&aT Pwith PULL requires
up to 6 times less remappings th&T P with PUSH. Consequently, the number of

migrating tasks decreases up to 7 times and the overheadaegsto 9 times shorter

thanGT Pwith PUSH.
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Figure 5.24: Comparison of average remappings for reactive methods with PUSH and

PULL Models

GT P/cis the dynamic mapping method least affected in our evaloaiihe copy-

ing facilities which allowsGT P/c to reuse copies of the results of some tasks help to

decrease the impact of the inaccurate predictions causgtelUSH model. Follow-
ing with the same scenar®CE10,100Q 10) the NSL forGT P/c with PUSH is twice
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that of GT P/c with PULL. The number of remappings required when using ti&R
models is up to twice that for the PULL model. In the same maitime number of
migrated tasks is doubled and the overhead cost 2.5 timasihigr the PUSH model.
In general terms, the problem of the communication modelragriasks is highly de-
pendent upon the shape and the size of the DAG applicatioressidMved that for
the DAGs used in this experiments, the PULL models preseettegr performance
than the PUSH models. The evaluation of our reactive mesha® TP, GT P/c and
DLS/sr was carried out considering the PULL model. We note that newriktic
techniques are needed to exploit the nature of PULL modetsnstance scheduling
techniques based on the backward scheduling approach.

5.8 Reliable Task Scheduling with Rewinding and Mi-

gration

In this section we evaluate the performance of@&1eP/r andGT P/c/r systems which
include the Rewinding Mechanism. To achieve this, we widl ttee characteristics of
the second scenario, for which CCR = 0.5 and changing bankwigr time, with the
maximum bandwidth equal to one unit of data per unit of time. ifijfected randomly
(but repeatably) into our scenarios failures which will agtarticular processor as un-
available at the mid-point of the execution. Thus, when Hikiffe is detected at the
next rescheduling point (RP), the rewinding mechanism béltriggered to allow the
application to complete despite the unavailable processaliures will be added to
the same scenarios used to benchmarlGmé@ andGT P/c, so that we will be able to
compare for each model the amount of extra time required &wgplication to finish
execution when a failure occurs. This can be determined eydifierence between
the makespan obtained for the application with failure d®dmakespan obtained for
application without failure, which is the same that of Sactb.4 and Section 5.5 for
GTPandGT P/c respectively. It is important to remember that these makesgre
for different circumstances, sin€&T P andGT P/c might simply fail to terminate in
the presence of failure. In order to gain a better understgrid this area, we monitor
a set of complementary metrics, defined in Section 3.5, wivetbelieve are related
to the performance of the application. These complememiatyics are the levels re-
wound (LR), the placed tasks rewound (PTR) and the rewindueghead cost (ROO).
Our experimental results show that the rewinding mechafisithe GT P/c/r system
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outperforms theéST P/r system in most cases. This can be observed in the graphics
of Figure 5.15 where the average NSL 6T P/c/r tend to be less tha@T P/r for

all the scenarios. This means that in the presence of adaiur application using
GTP/c/r will require less extra time to finish execution than us@®@P/r. To ex-
plain this, we will use the complementary metrics. We obsemfigure 5.15 that for
SCHE10,500,30) the average NSL fa&T P/c/r is up to 11% better thaBT P/r. Now,
from the complementary metrics, we observe in Figure 5.463 P/r will need up to
5.8% more levels rewound th&iT P/c/r, and the number of tasks to be recomputed
is up to 8% more thai&TP/c/r (see Figure 5.17), generating 3% more rewinding
overhead (see Figure 5.18). From this we learn that thestsexilinear chain of events
which links the number of levels rewound, the number of remebtasks, the rewind-
ing overhead cost and finally the real makespan of the apjgicaWhen processors
fail,the strategy of using reusable copies in @&P/c/r model, may help some re-
maining tasks still retrieving data from the failed proaasto retrieve data from other
sites. Thus, these tasks will not be rewound, reducing tlpaaiof the linear chain of
events on makespan.

In general terms our experimental results showed that thendgng mechanism helps
to preserve the execution of the application despite thegoree of failure in particular
processors. The performance of the rewinding mechanisra farticular scheduling
system is highly dependent upon the details of the scheglstiategies used. We have
shown that the strategy of maintaining reusable copies nefytb reduce the impact
of the failed processor on makespan. Obviously, mappingpoust which are not able
to preserve the execution of the application in the preseheefaulty processor, will
need to restart the execution of the application from thg beginning.

5.9 Summary

In this chapter we have presented the simulation resultsuofegperiments, which
included the use of DAGs with different shapes and sizes, SlfChitectures with
different number of processors and a number of test scenamiolving a sequence of
events, each simulating a resource change in either pramoasisandwidth availability.
We started by presenting the results of the evaluation oktagc mapping methods
HEFT andDLS. Then we presented the results for {&& P, GT P/c and DLS/sr
models. We noted that setting the frequency of the reschregpbints is an important
element of cyclic mapping methods. Next, we showed that ¢éimsideration of using
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PUSH or PULL models for data transfer in SHCS may affect thopmance of the
application. Finally we presented the results®¥ P/r andGT P/c/r which include
the rewinding mechanism.



Chapter 6
Conclusions

In this chapter we present the conclusions of our researck.Wide start by presenting
a summary of the results obtained in our experiments. Neatswggest future work
related to the rewinding mechanism as a scheduling strategyap DAG applications
onto heterogeneous and dynamic distributed computingsyst Finally, we express
some final thoughts.

6.1 Summary of Results

This research work explored the problem of mapping paralpgilications onto het-
erogeneous and dynamic distributed computing systems.caieissues are that the
availability and performance of resources, which are alyday their nature heteroge-
neous, can be expected to vary dynamically, even duringdhese of an execution.
Thus, we presented in Section 3.2, B& P system with the premise of addressing
the dynamic nature of SHCS by allowing rescheduling and atign of tasks of an
executing application in response to significant variaionresource characteristics.
However, we found that our mod@éIT P apart from reacting to the dynamic nature of
SHCS, reacted to inaccurate predictions from previousddies, mainly caused by
the internal factors discussed in Section 5.3. This was showection 5.4 when we
evaluatedsT Pagainst theHEF T algorithm in those scenarios with 0% of variability
in resourcesGT P proved to be competitive compared with other reactive saliregl
mechanisms. This was shown in Section 5.4 when we eval@lIdtin more realistic
SHCS scenarios and compared the performan€&Td? against théDLS/sr approach.
For reactive scheduling approaches allowing reschedwmdy migration of tasks, a
cost must be paid which is reflected in the overhead cost aedthji related with the
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number of migrated tasks. In this case, we observedDh&/sr tends to generate a
higher number of migrated tasks th@i P, which in the end will negatively impact the
final makespan. This is mainly because of the combinatiowoffactors: a) The first
factor is related to the prediction of the spare time of tagksch may be affected by
the external and internal factors described previouslyTh® second factor is related
to the criterion to apply the selective rescheduling pohelich dictates that the spare
time of tasks are evaluated when a task finishes executions, s the task graphs
become larger and complex (500 and 1000 tasks), the condminat these factors
may increase the number of rescheduling points, increasi@giumber of migrated
tasks which will affect the final makespan. Concerning tlze sif the rescheduling
points, we found that the strategy used in our experimengdgatuate the performance
of the reactive mapping methods, which consider a fixedepeescheduling cycle for
the whole spectrum of bounds for each scenario, may not bguatke for some of the
bounds. New efforts are required to optimize the size of #€sehmeduling cycles. We
believe that the observed variability of resources can bararpeter to determine the
length of the rescheduling cycle.

We showed in Section 5.5 that models allowing schedulingnaigdation of tasks may
generate copies, which can be reused in subsequent scigedekisions as a direct
input for tasks which have migrated during the process. 8asethis observation, we
designed an extended version®T P calledGT P/c. We showed in Section 5.5 that
using a small fraction of the total copies generated may avgpthe makespan of the
application. This is because such copies avoid unnecedatayransfer between tasks
and exploit the network link which offers the minimum datartsfer cost according to
the latest performance resource information. However, alete that further efforts
can be made to increase the number of copies used or to det¢hess. Whatever the
case, reusing data represents a viable approach to entrencgdic use of mapping
methods.

Fault tolerance is an important issue in SHCS as the avhilabf resources cannot
be guaranteed. Scheduling methods not considering this isgl have to restart the
application from the very beginning in the presence of a @ssor failure. The rewind-
ing mechanism described in 3.5 seeks to preserve the egr@ftDAG applications,
despite the presence of a processor failure. We showed tio8€e86.8 that the perfor-
mance of the rewinding mechanism in a particular methodgbliiidependent upon
the details of the scheduling strategies used, encompgaissines such as task assign-
ments, data transfers, migration of tasks, data replinadiad so on. Thus, another
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benefit of reuse copies is that it allows a better performari¢be rewinding mecha-
nism. This is because, as we showed in Section 5.8 theres exisiear chain of events
linking the levels rewound with the number of rewound taskkich determines the
overhead cost of rewinding the application. Then, the refisepies allowssT P/cto
have fewer rewound levels th&iTl P, being reflected in the number of tasks rewound
and in the overhead cost.

6.2 Future Work

In our research we used the rewinding mechanism in the cbotdault tolerance. It

is also interesting to ask if there exists any other areask saheduling in which the
rewinding mechanism could be used effectively. We belibat the rewinding mech-
anism could be used as a scheduling strategy focused on mingthe makespan
of the application. For instance, most of the DAG schedulerthe literature tend
to obtain a schedule of unfinished tasks, usually with theailje of minimizing the

makespan. However, there could be some cases in which regittte DAG (recom-

putation of finished tasks) could derive a better makespanilltstrate this, we will

use the example of Figure 6.1 which shows the task graph,H@&SSarchitecture, the
static information and the initial schedule obtained by HIEF

4 :)\4 Task | PL | P2 | P3

0 3 2 4
1 1 3 3
2 1 4 3
1 3
@ 3 |2 | 4 3
a) DAG application b) Heterogeneous Information

Task PE EST EFT

Pl |-——» P2

0 P2 0 2

\\1\ / 1 P2 2 5
2 P1 6 7

P3 3 P1L 7 9

c) SHCS architecture
d) Initial Schedule

Figure 6.1: Example (t=0) for reactive scheduling with rewinding
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Thus, following our approach, and assuming a reschedubing pt t=2, Figure 6.2

shows the information updated for both the progress of taskisthe performance of

resources. At = 2, taskvp has finished execution and we observe a drastic decrease

in the availability for P2 from 1 to 0.40. Following the caosgiof candidate schedules,

in which tasks are assigned to that processor which offeratinimum Earliest Finish
Time, Figure 6.2(c) shows the Gantt chart of the new schegeiherated bysTP, in
which vy is migrated frompy to p1, such that the new estimated makespan is equal to

10.
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Figure 6.2: Example (t=2) for reactive scheduling with rewinding

However, if att = 2 we first rewind the tasky and then apply the costing of can-

didate schedules foBT P, we will obtain the schedule showed in Figure 6.2(d), in

which we observe thaty is recomputed ap;. This action allows us to save 10%

in the makespan compared with the previous exampl@DP. Thus, the rewinding

mechanism can be productively used as a part of schedulaiggy.
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6.3 Final Thoughts

In this research, we place strong emphasis in four key aspetiich we believe are
central when designing scheduling mechanisms to map DAGcagipns on SHCS:
reactivity, data-aware scheduling, data transfer flow aetlability. The first aspect
allowed us to explore reactive scheduling mechanisms orese to significant vari-
ations in resource characteristics. The strategy of miggaiasks allowed us to ef-
ficiently address the dynamic nature of SHCS. Since we belieat new classes of
complex DAG applications will emerge to exploit the vast rfnenof resources of-
fered by SHCS, the second aspect was focused on undersiaghditbehavior of the
DAG application when it is executed in a reactive environm&hus, we observed that
reuse of data was possible and useful to reduce the impadgadinion on makespan by
avoiding unnecessary data transfer between tasks, exgldite network links more
efficiently. The third aspect concerns the relationshipveein the DAG application
(defined by the owner of the DAG) and the mapping method (definyethe owner of
the method). Thus, we identified two main models to allow thagfer of data among
tasks, theeUSHandPULL models. We explored the impact of using either Bé&SH
or PULL model on makespan. We found that, ignoring this issue magtivedy affect
the performance of the application. Finally, the fourtheagponcerns the reliability
of the reactive scheduling mechanisms, as some resourndaitduring execution.
Thus, we proposed a rewinding mechanism to preserve thetseof the application
despite the presence of a processor failure.
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