
Reactive Scheduling of DAG Applications on

Heterogeneous and Dynamic Distributed

Computing Systems

Jesus Israel Hernandez

T
H

E

U N I V E R S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2008

Abstract

Emerging technologies enable a set of distributed resources across a network to

be linked together and used in a coordinated fashion to solvea particular parallel ap-

plication at the same time. Such applications are often abstracted as directed acyclic

graphs (DAGs), in which vertices represent application tasks and edges represent data

dependencies between tasks. Effective scheduling mechanisms for DAG applications

are essential to exploit the tremendous potential of computational resources. The core

issues are that the availability and performance of resources, which are already by their

nature heterogeneous, can be expected to varydynamically, even during the course of

an execution. In this thesis, we first consider the problem ofscheduling DAG task

graphs onto heterogeneous resources with changeable capabilities. We propose a list-

scheduling heuristic approach, the Global Task Positioning GTP scheduling method,

which addresses the problem by allowing rescheduling and migration of tasks in re-

sponse to significant variations in resource characteristics. We observed from experi-

ments withGTPthat in an execution with relatively frequent migration, itmay be that,

over time, the results of some task have been copied to several other sites, and so a sub-

sequent migrated task may haveseveral possible sourcesfor each of its inputs. Some

of these copies may now be more quickly accessible than the original, due to dynamic

variations in communication capabilities. To exploit thisobservation, we extended our

model with aCopying Management(CM) function, resulting in a new version, the

Global Task Positioning with copying facilities (GTP/c) system. The idea is to reuse

such copies, in subsequent migration of placed tasks, in order to reduce the impact of

migration cost on makespan. Finally, we believe that fault tolerance is an important

issue in heterogeneous and dynamic computational environments as the availability

of resources cannot be guaranteed. To address the problem ofprocessor failure, we

propose a rewinding mechanism which rewinds the progress ofthe application to a

previous state, thereby preserving the execution in spite of the failed processor(s). We

evaluate our mechanisms through simulation, since this allow us to generate repeatable

patterns of resource performance variation. We use a standard benchmark set of DAGs,

comparing performance against that of competing algorithms from the scheduling lit-

erature.

iii

Acknowledgements

First I would like to express my deep gratitude to my supervisor Dr. Murray Cole.

His patience, always appropriate advice and support, oftenbeyond duty, have been

invaluable to shape my research skills. I would like to express my appreciation to Dr.

Jane Hillston and Dr. Mike O’Boyle for providing valuable comments and suggestions

on drafts of this research; and to the members of the Institute for Computing and

Systems Architecture (ICSA) for the vibrant research environment.

I would like to give particular thanks to Dr. Rizos Sakellarious and Dr. Marcelo Cintra

for their valuable advice and discussion about the details of the research.

My sincerest thanks go to all the members of my family for their unconditional support

and encouragement during every stage of my life. In the same manner, I thank my

mother and brothers in law for their support and prayers.

I would like to thanks the fellowship of Duncan Street Baptist Church for all their

love and support to my wife and to me, especially to Jaqui, Ruth, Harry and Brenda,

Frank and Peggy, Ira and Isobel, David and Esther, Robert andRuth, Tom, Allan,

Evelyn, Mike, John and Betty. I thank the fellows from the Ramblers Group, especially

to the leaders, Jim, Douglas and Shirley, for the opportunity to enjoy the amazing

Scottish landscapes. God bless you all. Finally, I gracefully acknowledge the moral

and financial support of CONACYT.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Jesus Israel Hernandez)

v

I dedicate this thesis to my two women:La Miss Gloria, my mother andLiz, my wife.

My deepest thank for your love, patience, prayers and care, which made this endeavor

a reality.

vi

Table of Contents

1 Introduction 1

1.1 Contribution . 1

1.2 Outline of the dissertation . 3

2 Review of Literature 5

2.1 Heterogeneous Computing . 6

2.2 Scheduling DAGs on SHCS . 7

2.3 The Scheduling Architectures .9

2.4 Applications Class Taxonomy . 10

2.4.1 Independent Tasks . 10

2.4.2 Task Graphs . 12

2.5 Task Mapping Heuristic Strategies 14

2.6 Task Mapping Operation Modes . 21

2.7 Data Awareness Taxonomy . 24

2.8 Taxonomy of Fault Tolerance Mechanisms 25

2.9 Global Scheduling Simulators . 27

2.10 Summary . 29

3 The Global Task Positioning (GTP) Models 31

3.1 Description of the GTP Model . 32

3.1.1 Definition of the SHCS . 32

3.1.2 Definition of the Input Task Graph (ITG) 33

3.1.3 Definition of the Situated Task Graph (STG) 34

3.2 TheGTPScheduling Method . 36

3.2.1 Setting Task Ranks . 36

3.2.2 The Task Migration Model in GTP 37

3.2.3 Costing of Candidate Schedules 38

vii

3.2.4 Scheduling in the GTP Model 40

3.2.5 Time Complexity Analysis for the GTP model 43

3.3 Description of the GTP/c Model . 43

3.3.1 Definition of the SHCS . 44

3.3.2 The Situated Task Graph with Copying (STG/c)45

3.4 TheGTP/cScheduling Method . 45

3.4.1 Setting Task Ranks . 46

3.4.2 The Task Migration Model in GTP/c 46

3.4.3 Estimating the Communication Cost 47

3.4.4 Estimating Computation Cost 48

3.4.5 Procedure of the GTP/c Model 48

3.4.6 Time Complexity Analysis for the GTP/c Model 49

3.5 Reliable DAG Scheduling with Rewinding and Migration 50

3.6 The GTP System with Rewinding (GTP/r) 52

3.6.1 Definition of the SHCS . 52

3.6.2 Definition of the Situated Task Graph (STG) 52

3.6.3 TheGTPSystem with Rewinding (GTP/r) 53

3.7 The GTP/c System with Rewinding (GTP/c/r) 55

3.7.1 Definition ofSRPandSTG. 55

3.7.2 Procedure of the GTP/c/r Model 56

3.8 Summary . 57

4 The Simulation Framework 59

4.1 The Directed Acyclic Graphs (DAGs) 59

4.2 Setting the Fixed Rescheduling Point 63

4.3 The Scheduling Scenarios . 64

4.3.1 The Scenarios forGTPandGTP/c 64

4.3.2 The Scenarios forGTP/r andGTP/c/r 66

4.4 Comparison Metrics . 67

4.4.1 Comparison Metrics for GTP and GTP/c 67

4.4.2 Comparison Metrics for GTP/r and GTP/c/r 68

4.5 The Simgrid Software . 69

4.6 The Tracking Mechanism . 70

4.7 Summary . 72

viii

5 Experimental Results 73

5.1 Structuring the Experimental Results 73

5.2 The Problem with Static Mapping Methods onSHCS 75

5.3 Factors affecting the predictions of static schedules 79

5.4 Reactive Scheduling of DAG Applications on SHCS 81

5.4.1 Scheduling Scenario for CCR = 0.1 and infinite bandwidth . . 82

5.4.2 Scheduling Scenario with CCR = 0.5 and variable bandwidth . 83

5.4.3 Scheduling Scenario with CCR = 1.5 and variable bandwidth 88

5.5 Reactive Scheduling with Copying and Migration 99

5.6 Impact of the frequency of the Rescheduling Points in theMakespan . 108

5.7 Rethinking DAG Applications for SHCS117

5.7.1 Evaluating the PUSH and PULL Models for Static Mapping

Methods . 120

5.7.2 Evaluating the PUSH and PULL Model for Reactive Mapping

Methods . 120

5.8 Reliable Task Scheduling with Rewinding and Migration 126

5.9 Summary . 127

6 Conclusions 129

6.1 Summary of Results . 129

6.2 Future Work . 131

6.3 Final Thoughts . 133

Bibliography 135

ix

List of Figures

2.1 Heterogeneous Computing Systems 7

2.2 Scheduling Classes in SHCS . 8

2.3 Taxonomy of the Scheduling Architectures 9

2.4 Applications Class Taxonomy . 10

2.5 Task Graphs . 12

2.6 Taxonomy of Task Mapping Strategies15

2.7 Taxonomy of Task Mapping Operation Modes24

2.8 Data Awareness Taxonomy . 25

2.9 Fault Tolerance Mechanisms Taxonomy26

3.1 The Global Task Positioning (GTP) mapping method 33

3.2 Example of the elements required by the GTP model 35

3.3 The Migration Model in GTP . 38

3.4 Example (t=0) of the GTP System 42

3.5 Example (t=14) of the GTP System 43

3.6 The GTP/c System . 44

3.7 The GTP/c Migration Model . 46

3.8 Example of The GTP/c System . 49

3.9 The Rewinding Mechanism . 51

3.10 The Rewinding Mechanism for GTP 54

3.11 The Rewinding Mechanism for GTP/c 56

4.1 DAGs for Particular Applications 60

4.2 DAGs representation . 61

4.3 Random DAGs in the STDGP Project 63

4.4 The Scheduling Scenarios forGTPandGTP/c 65

4.5 The Scheduling Scenarios forGTP/r andGTP/c/r 66

4.6 The Tracking Mechanism . 72

xi

5.1 Structure of the experimental results obtained in our research 74

5.2 Average NSL of the static mapping methods HEFT and DLS 78

5.3 Example of a distorted notion of SHCS architectures 80

5.4 Average NSL forGTP, GTP/c andDLS/sr when CCR=0.1 and infi-

nite bandwidth . 85

5.5 Average Remappings forGTP, GTP/c andDLS/sr when CCR=0.1

and infinite bandwidth . 87

5.6 Average NSL forGTP, GTP/c andDLS/sr when CCR=0.5 and vari-

able bandwidth . 90

5.7 Average Remappings forGTP, GTP/c andDLS/sr when CCR=0.5

and variable bandwidth . 92

5.8 Average Migrated Tasks forGTP, GTP/c andDLS/sr when CCR=0.5

and variable bandwidth . 94

5.9 Average Overhead Cost forGTP, GTP/c andDLS/sr when CCR=0.5

and variable bandwidth . 96

5.10 Average NSL forGTP, GTP/c andDLS/sr when CCR=1.5 and vari-

able bandwidth . 99

5.11 Average Remappings forGTP, GTP/c andDLS/sr when CCR=1.5

and variable bandwidth . 101

5.12 Average Migrated Tasks forGTP, GTP/c andDLS/sr when CCR=1.5

and variable bandwidth . 103

5.13 Average Overhead Cost forGTP, GTP/c andDLS/sr when CCR=1.5

and variable bandwidth . 105

5.14 Average Data Transfers Monitoring 107

5.15 Average NSL for theGTP/r andGTP/c/r System 110

5.16 Average Levels Rewound for theGTP/r andGTP/c/r System 112

5.17 Average Tasks Rewound for theGTP/r andGTP/c/r 114

5.18 Average Overhead Cost for for theGTP/r andGTP/c/r 116

5.19 Average NSL for Scenarios with minimum variability 116

5.20 Average NSL for Scenarios with high variability 117

5.21 DAG application . 118

5.22 Comparison of HEFT with PUSH and PULL Models 121

5.23 Comparison of average NSL for reactive methods with PUSH and

PULL models . 122

xii

5.24 Comparison of average remappings for reactive methodswith PUSH

and PULL Models . 123

5.25 Comparison of average migrated tasks for reactive methods with PUSH

and PULL Models . 124

5.26 Comparison of average overhead cost for reactive methods with PUSH

and PULL models . 125

6.1 Example (t=0) for reactive scheduling with rewinding 131

6.2 Example (t=2) for reactive scheduling with rewinding 132

xiii

Chapter 1

Introduction

Emerging computational platforms enable a set of heterogeneous and non-dedicated

resources distributed across a network to be linked together and used in a coordinated

fashion to solve a particular problem at the same time. We consider the problem of

scheduling parallel applications, represented by directed acyclic graphs (DAGs), onto

heterogeneous and shared computational resources, in a waythat minimises the re-

sulting schedule length (makespan) of the application. Thecore issues are that the

availability and performance of the resources, which are already by their nature hetero-

geneous, can be expected to varydynamically, even during the course of an execution.

This thesis is motivated by the fact that the DAG scheduling problem is NP-complete

in its general forms. A vast number of heuristics have been proposed in the litera-

ture. However, most of the heuristics were designed for homogeneous environments

composed by processors with the same computational capabilities. Some heuristics

were designed for heterogeneous environments composed by processors with differ-

ent computational capabilities, but assuming that such capabilities are dedicated and

unchanging over time. New efforts are required to develop scheduling mechanisms

to address the heterogeneous and dynamic nature of emergingglobal computational

platforms.

1.1 Contribution

In this research, we place strong emphasis in four key aspects, which we believe are

central when designing mapping methods for heterogeneous and dynamic distributed

computing systems: reactivity, data-aware components, data transfer flow and fault

tolerance. The contributions of this work are summarized asfollows:

1

2 Chapter 1. Introduction

1. We propose a list-scheduling heuristic approach, the Global Task Positioning

GTP mapping method, which addresses the DAG scheduling problemfor het-

erogeneous and dynamic computational environments with a cyclic use of a

static mapping method. The termGlobal denotes the coordinated collabora-

tive environment of resources located potentially at global scale, made possible

by advances in network technology. Our method allows rescheduling and mi-

gration of tasks when this helps to minimize makespan. Thus,at each reschedul-

ing point the objective is to obtain an improved task schedule which minimises

the anticipated makespan, considering the current status of both application and

computational resources.

2. We observed from experiments withGTP that due to their task migration pol-

icy, the results of some tasks may have been copied to severalother sites, and

so a subsequent migrated task may have several possible sources for each of

its inputs. Some of these copies may now be more quickly accessible than the

original, due to dynamic variations in communication capabilities. To exploit

this observation, we extended theGTPmodel by including a Copying Manage-

ment function, resulting in theGTP/c model. We demonstrate that reusing such

copies will help to reduce the impact of migration on makespan by avoiding

unnecessary data transfer between tasks.

3. The relationship between the DAG application (defined by the owner of the

DAG) and the mapping method (defined by the owner of the method) is not

fully explored. Most mapping methods focus on scheduling strategies which use

the shape and static information of the DAG, just as a reference to map tasks

onto processors. They do not consider the mechanism throughwhich communi-

cation of task results is actually achieved. We have found that ignoring this issue

may negatively affect the performance of the application. We observed two main

models to allow the transfer of data among tasks, thePUSH modeland thePULL

model. In the PUSH model as soon as a task finishes execution, the data results

are pushed to its successors for execution. In the PULL model, the data results

are pulled from predecessors as soon as a task is mapped on a particular proces-

sor. We conducted some experiments in which we show that the final makespan

of the application can be affected depending on the data transfer model used to

execute the DAG application.

4. Fault tolerance is an important issue in computational environments where re-

1.2. Outline of the dissertation 3

sources are heterogeneous, non-dedicated and distributed, as the availability of

processors cannot be guaranteed. Effective DAG schedulingmethods must in-

clude fault tolerant mechanisms to preserve the execution of the application, de-

spite the presence of a processor failure. To address this, we propose a rewinding

mechanism, an event-driven process executed when a failureis detected at some

rescheduling point. The rewinding mechanism seeks to preserve the execution

of the application by recomputing and migrating those taskswhich will disrupt

the forward execution of succeeding tasks. The mechanism rewinds the progress

of the application to a previous state, thereby preserving the execution despite

the failed processor(s).

1.2 Outline of the dissertation

This dissertation is structured as follows. Chapter 2 provides a review of relevant lit-

erature about the DAG scheduling problem. We describe the elements and evolution

of the DAG scheduling problem from homogeneous environments to emerging global

computational environments composed by heterogeneous andnon-dedicated compu-

tational resources. In Chapter 3, we present theGTP reactive method for scheduling

DAG applications on heterogeneous resources with changeable capabilities over time.

Then, we present theGTP/c reactive method, in which re-use of information is in-

troduced, to improve the utilization of the computational resources and to minimize

the impact of the migration cost on the application makespan. Finally, we propose the

rewinding mechanism to preserve the execution of the application despite the presence

of processor failure, increasing the reliability of our dynamic scheduling methodsGTP

andGTP/c. The evaluation of our reactive mapping methods is conducted by simu-

lation, since this allows us to generate repeatable patterns of resource performance

variation. In Chapter 4 we describe all the elements contained in the simulation frame-

work in which we conduct our experiments. We describe the source and characteristics

of the input task graphs used in the evaluation. Then, we describe the distinctive char-

acteristics of our scenarios under which the mapping methods are evaluated. At the end

of this chapter, we describe the adaptive version of the Simgrid software, which allows

us to manage dynamic events in simulating variations in the performance of resources.

In Chapter 5 we present the assessment of our experimental results. By using de-

fined metrics, we use theHEFT static method andDLS/sr, an adaptive version of the

dynamic level scheduling (DLS) static method for heterogeneous and dynamic com-

4 Chapter 1. Introduction

putational environments, to benchmark and evaluate the performance of our proposed

scheduling methodsGTP andGTP/c. In the same manner, we include the rewind-

ing mechanism into our scheduling methodsGTPandGTP/c, and based on defined

metrics, we evaluate their performance. Finally, Chapter 6discusses future work and

concludes the dissertation.

Chapter 2

Review of Literature

Grid computing is an emerging technology distinguished by integrating large-scale,

geographically distributed and heterogeneous computational resources with different

administrative domains. Although this is a relatively simple concept, achieving it has

been a major challenge in Computer Science. Our research work has been inspired by

Grid systems [(Schopf, 2004), (Foster et al., 2001), (Foster et al., 2002), (Foster et al.,

2003b), (Foster et al., 2003a)]. However, it should be notedthat there are many practi-

cal obstacles which would make it difficult to apply our work directly to real, current

Grid systems, including the independence of local schedulers, the problems (or even

impossibility) of trying to arrange co-scheduling across domains and other administra-

tive matters. Thus, while we hope that our more abstract results may be of interest to

Grid-like systems of the future, we expect that they may be ofmore immediate inter-

est to the more open, heterogeneous distributed systems available within organizations

and their related domains.

Our research work focuses on the scheduling mechanisms to address the DAG schedul-

ing problem on heterogeneous and dynamic distributed computing systems. The core

issues are that the availability and performance of resources, which are already by their

nature heterogeneous, can be expected to vary dynamically,even during the course

of an execution. Since this scheduling problem is NP-complete in its general forms

[(Gary and Johnson, 1979), (Papadimitriou and Steiglitz, 1998)], a number of heuris-

tics have been proposed in the literature. However, most approaches were designed for

homogeneous environments, assuming that the processors have the same capabilities

[(Kwok and Ahmad, 1999a), (McCreary et al., 1994)]. Some other approaches were

designed for particular heterogeneous environments, assuming that heterogeneous re-

sources are dedicated and unchanged over time [(Topcuoglu,2002), (Shi and Dongarra,

5

6 Chapter 2. Review of Literature

2006), (Sih and Lee, 1993)]. In this chapter we make a literature review embracing the

different elements involving the DAG scheduling problem. We start this chapter by giv-

ing a brief overview of heterogeneous computing. Next we describe the task schedul-

ing process on heterogeneous and dynamic distributed computing systems, followed

by the different scheduling architectures observed in the literature. Then, we describe

the different parallel application classes that we can find in the literature and we con-

tinue by reviewing a pair of issues needed to address the DAG scheduling problem on

heterogeneous resources with changeable capabilities, the task mapping strategies and

the mapping method operation mode. We continue by exploringparticular issues re-

lated to dynamic heterogeneous environments, such as faulttolerance and data-aware

scheduling, to introduce part of our research work. We finishthis chapter by describing

some simulation toolkits from the literature, to build and test mapping methods.

2.1 Heterogeneous Computing

Initially, homogeneous computational environments (i.e., parallel computers) were dis-

tinguished by the capability to execute multiple tasks in parallel on dedicated proces-

sors with the same capabilities connected by local interconnection networks. This al-

lowed the creation of problem partitioning techniques to solve large problems, which

usually did not fit on a single processor or could not be solvedin a reasonable time. We

will refer to such partitioned problems as parallel applications. The objective of paral-

lel computing was to exploit the parallelism of the computational platform to execute

parallel applications, which could help to solve large problems in reasonable time. To

achieve this, two major problems had to be addressed: the first concerns partitioning

the problem into a set of smaller tasks and the second concerns the mechanism used

to schedule the tasks onto processors [(Bokhari, 1981), (Girkar and Polychronopoulos,

1987)].

Heterogeneous computing is a natural result of the advancesin network technology,

in which it became possible for distributed computers with different capabilities to ef-

ficiently communicate and therefore collaborate to solve parallel applications at the

same time. Heterogeneous computing can be seen as a special form of parallel and

distributed computing. Parallel computing on homogeneousenvironments is distin-

guished by containing all the elements required by the parallel application at a single

machine or parallel computer. In heterogenous computing platforms, the elements

required by the parallel application are dispersed among distributed resources. Un-

2.2. Scheduling DAGs on SHCS 7

like other distributed applications, heterogeneous computing requires, in a coordinated

fashion, direct access to the main components (i.e., cpu, data, memory, etc.) of the

computational resources to solve the parallel application.

Dedicated Heterogeneous

Computing Systems Computing Systems

Shared Heterogeneous

Heterogeneous Computing

Systems

Figure 2.1: Heterogeneous Computing Systems

As shown in Figure 2.1, we identify two classes of Heterogeneous Computing Sys-

tems (HCS): dedicated heterogeneous computing systems (DHCS) and shared hetero-

geneous computing systems (SHCS). DHCS describes heterogeneous systems where

resources are tightly controlled, and may therefore be dedicated to a particular ap-

plication. Parallel machines, clusters or networks of workstations with the ability to

provide dedicated, exclusive scheduling illustrate this class. SHCS describes hetero-

geneous systems in which there is weaker, less restrictive or less coordinated control

and resources may therefore be shared with other unknown applications. For exam-

ple, networks of workstations without access control, or alternatively, collections of

more widely distributed systems with their own globally inaccessible local scheduling

policies fall into this category. We focus on the challenge of scheduling DAG appli-

cations on SHCS systems, dealing with the definition and development of mapping

mechanisms which must consider the resulting dynamic nature of the heterogeneous

resources.

2.2 Scheduling DAGs on SHCS

A key challenge in SHCS, is to define the scheduling mechanisms that enable a set

of heterogeneous resources with changeable capabilities across a network to be linked

together and used in a coordinated fashion to solve a particular parallel application.

Due to the dynamically shared nature of SHCS resources, Figure 2.2 distinguishes

two classes of scheduling approaches: anapplication levelscheduling and aresource

levelscheduling.Application levelscheduling is also known in the literature as global

8 Chapter 2. Review of Literature

scheduling [(Casavant and Kuhl, 1988)] or meta-scheduling[(GridWay, 2002)]. Re-

source levelscheduling is referred to as local scheduling [(Casavant and Kuhl, 1988)].

Our research work concerns an application level schedulingand we will refer to it

during this work as global scheduling.

Resource Level Application Level

Scheduling Classes in Shared
Heterogeneous Computing Systems

Figure 2.2: Scheduling Classes in SHCS

Global scheduling can be defined as the process of making scheduling decisions

over distributed resources with different and changeable capabilities over time. There

are a pair of challenges that global scheduling mechanisms must face:heterogeneityof

resources, which results in different capabilities for task processing and thedynamic

nature of resources which may vary their performance (i.e., availability and band-

width) over time, even during the execution of a particular application. Variations in

the availability of processors may come from the autonomy ofprocessors to follow lo-

cal policies and competition by other applications for resources. Variations in network

bandwidth may come from the traffic on network links. Thus, effective mapping meth-

ods for SHCS must include mechanisms to address the dynamic nature of resources

and local schedulers.

The global scheduling process consists of several steps over time. The first three steps

are required to map tasks onto heterogeneous resources. Thefourth step concerns a

time dimension, in which the first three steps are iterated inresponse to significant

variations in resource characteristics (see Figure 3.1).

1. Resource Pool Definitionis the process of collecting (discovering) information

concerning the resources available at some point of time. Information is a critical

resource, and gathering this information is a vital activity. In the literature, we

can find monitoring tools used in the grid context, such as theNetwork Weather

Service [(NWS, 2002)] or Globus Monitoring and Discovery System [(MDS,

2000)].

2. Task Mapping Strategiesaim to assign the tasks onto selected candidate re-

sources according to some objective function. To achieve this, the current up-

2.3. The Scheduling Architectures 9

dated information about both the progress of the application and the performance

of resources must be available. This step is highly dependent upon the details of

the scheduling method used.

3. Task Execution Processin which the tasks are submitted to the selected candidate

resources to be executed.

4. Reactivityconcerns the dynamic nature of resources , expressing the need for an

iterative use of the first three steps to adapt the application to the dynamic nature

of the computational platform.

2.3 The Scheduling Architectures

As shown in Figure 2.3, scheduling architectures can be classified into a three category

taxonomy: centralized, hierarchical and decentralized.

Centralized Hierarchical Decentralized

Scheduling Architectures

Figure 2.3: Taxonomy of the Scheduling Architectures

1. A centralizedmechanism involves one centralized scheduler in the execution of

the application [(Pegasus, 2003)]. The scheduler maintains all the dynamic infor-

mation concerning both the progress of the application (tasks and data transfers)

and the performance of computational resources. As we will detail in the next

chapter, our proposed model (see Figure 3.1) is based on thisapproach [(Hernan-

dez and Cole, 2007a)]. We note that by maintaining complete knowledge about

the application, it is possible to design and include complementary modules (i.e.,

fault tolerant mechanisms) to support the endeavor of the scheduler [(Hernandez

and Cole, 2007b)].

2. A hierarchicalmechanism is composed of a central scheduler interacting with

multiple lower-level schedulers. The central scheduler isresponsible for control-

ling the execution of the application and assigning a portion of the application to

10 Chapter 2. Review of Literature

each of the lower-level schedulers [(Thanalapati and Dandamudi, 2001), (Senger

et al., 2006), (Cao et al., 2003)].

3. A decentralizedmechanism allows the tasks composing the parallel application

to be scheduled by multiple schedulers. Thus, each scheduler maintains the

information relating to the set of tasks assigned to it. The scheduling decisions

are made by each scheduler over a portion of the application [(Ranganathan and

Foster, 2004), (Lima et al., 1999), (Arora et al., 2002)].

2.4 Applications Class Taxonomy

Parallel applications, as shown in Figure 2.4, can be represented by two main classes:

the first class consists of independent tasks and the second class consists of task graphs,

for which two main sub-groups are distinguished: parallel applications represented by

directed acyclic graphs (DAGs) and other graphs which may contain cycles and/or be

undirected, we will refer to such graphs as Non-DAGs. The scheduling mechanism

will be highly dependent on the class of the application.

Application Class

Independent Tasks Task Graph

Non−DAG DAG

Task Interaction Iterative Task
Graph (TIG) Graph (ITG)

Figure 2.4: Applications Class Taxonomy

2.4.1 Independent Tasks

Parallel applications in this category, are partitioned into a relatively large number of

mutually independent tasks. This means that they can be executed in any order. Ap-

plications such as master-slave [(Beaumont et al., 2005)] or parameter sweep [(Buyya

et al., 2005)] are part of this category. In the literature wecan find a vast number

2.4. Applications Class Taxonomy 11

of strategies to schedule applications composed of independent tasks onto processors.

Next, we describe some of the well known strategies for this category [(Xhafa and

Barolli, 2007), (Braun et al., 2001)].

MET (Minimum Execution Time) [(Amstrong et al., 1998)] is also known in the lit-

erature as LBA(Limited Base Assignment). It assigns each task to the proces-

sor which allow the smallest execution time for the task. This method is moti-

vated by giving each task the most suitable processor, ignoring its availability.

In dynamic heterogeneous environments where resources areshared and non-

dedicated, this method could lead to load imbalance among processors.

MCT (Minimum Completion Time) [(Freund et al., 1998)] assigns atask to the pro-

cessor which allows the minimum completion time. To achievethis, it must con-

sider the availability of processors to compute the estimated completion time.

OLB (Opportunistic Load Balancing) [(Freund et al., 1998)] assigns a task to the

processor having the earliest idle machine without considering the execution

time of the task on that processor. The notion behind this method is that it tries

to keep the processors as loaded as possible. Since this method does not consider

the execution times, it can affect the performance of the application.

Min-Min [(Amstrong et al., 1998), (Braun et al., 2001), (Ibarra and Kim, 1977)] con-

sists of two steps. In the first step, it computes the MCT valuefor each task

on each available processor for it. In the second step, the algorithm selects the

task with the minimum MCT value and assigns it to the corresponding proces-

sor. This is done iteratively until all the tasks have been scheduled. Intuitively, at

each iteration, the makespan increases the least possible (shorter tasks first), ex-

pecting to obtain a reduced final makespan. However, it is noteffective in terms

of exploiting the concurrency. For instance, by executing first the shorter tasks,

there could be longer tasks which will wait until all the shorter tasks scheduled

first in the processor, finish execution, even if there is another processor available

with no more tasks to execute.

Max-Min [(Amstrong et al., 1998), (Braun et al., 2001), (Ibarra and Kim, 1977)]

is similar to the Min-Min algorithm in the first step. In the second step, the

difference is that Max-Min will select the task with the maximum MCT value

and assign it to the corresponding processor. In the same manner, this is done

12 Chapter 2. Review of Literature

until all the tasks have been allocated. Intuitively, by executing longer tasks first,

there could be shorter tasks which can be executed concurrently with longer tasks

on other resources, exploiting more effectively the concurrency and expecting to

be reflected in better performance.

Sufferage [(Maheswaran et al., 1999)] is based on the idea that better mappings can

be generated by assigning a processor to a task that would ”suffer” most in terms

of expected completion time if that particular processor isnot assigned to it. The

sufferage value for each task is defined as the difference between its second-best

MCT and the best MCT. Thus, a task having a relatively high sufferage value

suggests that if it is not assigned to the processor with the best MCT, it may have

a bad performance, as the second-best MCT value is far from the best MCT.

a) Task Interaction Graph (TIG)

c) Iterative Task Graph (ITG)b) Directed Acyclic Graph (DAG)

Figure 2.5: Task Graphs

2.4.2 Task Graphs

In this class, we can distinguish a pair of groups: The DAG graph and Non-DAG graph.

2.4.2.1 The Directed Acyclic Graph (DAG)

Applications in this category can be abstracted by directedacyclic graphs (DAGs),

in which vertices represent application tasks and edges represent data dependencies

between tasks (see Figure 2.5(b)). In the literature we can find a vast number of

scheduling algorithms to schedule DAGs onto processors. The objective of such al-

gorithms is to map tasks to processors in a way which minimises the resulting sched-

ule length (makespan) while satisfying the task precedenceconstraints. Since this

2.4. Applications Class Taxonomy 13

problem is NP-complete, a number of heuristics have been proposed in the literature

[(Kwok and Ahmad, 1999a)]. In the literature, [(Kwok and Ahmad, 1999a)] presents

a taxonomy of DAG scheduling algorithms grouping common assumptions consid-

ered in the algorithms such as the task graph structure, computation costs, data trans-

fer costs, task duplication, number of processors and connectivity among processors.

However the algorithms considered are mainly designed for homogeneous environ-

ments. [(Casavant and Kuhl, 1988)] presents a hierarchicaltaxonomy for heuristics

scheduling methods in general-purpose distributed computing systems. By combin-

ing hierarchical characteristics with more general flat characteristics, it differentiates

a wide range of scheduling algorithms. Other taxonomies canbe found in [(Braun

et al., 1998), (Yu and Buyya, 2005)].Although the DAG scheduling problem has been

explored by many researchers, most of the algorithms were designed for homogeneous

environments, assuming that the processors have the same capabilities [(Kwok and

Ahmad, 1999a), (McCreary et al., 1994)]. Some other algorithms were designed for

particular heterogeneous environments, assuming that heterogeneous resources with

different capabilities are dedicated and unchanged over time [(Topcuoglu, 2002), (Shi

and Dongarra, 2006), (Sih and Lee, 1993)]. Few algorithms can be found address-

ing the characteristics of heterogeneous resources with changeable capabilities [(Zhao

and Sakellariou, 2004b), (Hernandez and Cole, 2007a), (Deelman et al., 2003)]. In

Section 2.5, we describe a taxonomy for task mapping strategies addressing the DAG

scheduling problem.

2.4.2.2 Non-DAG Graph

Applications in this category are represented by non-directed acyclic graphs (Non-

DAGs). In the literature we can distinguish a pair of different classes of Non-DAG

applications: The first class is based on theTask Interaction Graphs (TIGs)[(Hui and

Chanson, 1997)], an undirected graph as shown in Figure 2.5(a), where edges represent

interactions between tasks. A TIG was conceived as a graph that divides a program into

maximal sequential regions connected by undirected edges to denote the interaction be-

tween tasks. In [(Bokhari, 1981), (Hui and Chanson, 1997)],scheduling algorithms are

proposed to schedule TIGs onto resources. The objective of the scheduling algorithms

is to minimize the maximum processor workload, which is defined for each processor

as the total cost due to computation and communication of allthe tasks mapped to it.

The second class is based on theIterative Task Graphs (ITGs), used in many scientific

problems, which capture the pattern of recurrency at both task and application level,

14 Chapter 2. Review of Literature

as shown in Figure 2.5(c). An ITG can be directed or undirected. The problem of

scheduling ITGs is also known as loop scheduling. In [(Pam, 1988), (Yang and Fu,

1997), (Gasperoni and Schwiegelshohn, 1992)] can be found scheduling mechanisms

for ITGs.

2.5 Task Mapping Heuristic Strategies

The task scheduling problem is in its general form NP-complete, therefore it is not pos-

sible to find an optimal solution in polynomial-time unlessP = NP [(Kwok and Ah-

mad, 1999a), (Kwok and Ahmad, 1997)]. AnOptimalassignment denotes that based

on some objective function, the mapping method obtains the best solution (schedule)

for the problem [(Papadimitriou and Steiglitz, 1998)]. In the literature, there are only

three special cases for which it is possible to obtain an optimal solution in polyno-

mial time. The first case is related to scheduling tree-structured task graphs with

uniform computation costs on an arbitrary number of processors [(Hu, 1961)]. The

second case is related to scheduling arbitrary task graphs with uniform computation

costs on a two-processor system [(Coffman and Graham, 1972)]. The third case in-

volves scheduling an interval-ordered task graph with uniform node weights to an ar-

bitrary number of processors [(Papadimitriou and Yannakakis, 1979)]. In all cases the

communication cost among tasks is ignored. Since any credible formalisation of the

scheduling problem is NP-complete, some researchers focuson finding suboptimal so-

lutions (heuristics) to address the intractability of the problem, which usually obtain a

good solution in an acceptably short time. Heuristics can beseen as informed meth-

ods, which exploit efficiently the knowledge about the system to obtain a solution. In

the literature, most of the mapping methods have been developed for homogeneous

computing environments (HCE) [(Kwok and Ahmad, 1999a), (Gerasoulis and Yang,

1993)]. However, these approaches are not easily applicable to heterogeneous environ-

ments, which initially were DHCS, as they do not include mechanisms to properly map

tasks on heterogeneous resources. Thus, most of the scheduling approaches for het-

erogeneous computing systems were developed for DHCS, withthe common assump-

tions that heterogeneous resources are dedicated and unchanging over time [(Ercego-

vac, 1998), (Leangsuksun and Potter, 1993), (Eshaghian andWu, 1997), (Eshaghian,

1993), (Yang et al., 1993)]. As shown in Figure 2.6, heuristics can be grouped in four

main categories: approximate, clustering, task duplication and list scheduling.

2.5. Task Mapping Heuristic Strategies 15

Task Mapping Strategies

 Replication Scheduling

Approximate Clustering Data List

Figure 2.6: Taxonomy of Task Mapping Strategies

1. Approximatealgorithms usually search for a solution which is not the optimal,

but it is considered to be near the optimal value in the solution-space. They are

also known as iterative algorithms, because they usually explore (iterate) several

candidate solutions in the solution-space before finding a satisfactory solution

according to some objective function. Depending on the sizeof the problem, the

process to obtain a satisfactory solution may take a considerable time [(Sait and

Youssef, 1999), (Abraham et al., 2000), (Nath, 1997), (Spooner et al., 2003)].

2. List schedulingbased algorithms basically consist of two phases: Thetask pri-

oritizationphase in which a rank (priority) is assigned to each task, such that if

we construct an ordered list of tasks in decreasing order of priority, then we ob-

tain a predicted sequence of tasks execution. Thecandidate processor selection

phasein which each task in the sequence will be assigned onto that processor

which optimizes a predefined cost function (i.e., the earliest finish time). The

notion behind the approach is that the tasks with higher priority will be executed

first, expecting to improve the performance. These algorithms tend to perform

local optimization by assigning one after another each taskonto the suitable

resources which minimizes some objective function. Typically, the task priori-

tization process is based on static information about the application (weights of

nodes and edges). A pair of well known attributes are used to set the task pri-

orities, thet-level (top level) attribute andb-level(bottom level) [(Adam et al.,

1974b), (Gerasoulis and Yang, 1992)]. Thet-levelof a nodevi is defined as the

length of a longest path from an entry node tovi (excludingvi). The length of a

path is determined by the sum of all the node and edge weights (execution and

communication costs) along the path. Theb-levelof a nodevi is defined as the

the length of a longest path fromvi to an exit node. Thecriticalpath of a DAG

is the longest path in the DAG. The nature of theb-leveland t-level attributes

16 Chapter 2. Review of Literature

allows identification of the nodes on the critical path(s). This can be done by

computing for each task, the static attributeCP = t-level+ b-level, then those

tasks on the critical path(s) will have the highest value of CP. The algorithms

in this category tend to provide good solutions (quality of schedules) in a short

time [(Kwok and Ahmad, 1999b)]. The dynamic models proposedin our re-

search work are based on this category of heuristics. Next wedescribe some of

the well known list scheduling algorithms.

• TheDynamic Level Scheduling (DLS)algorithm [(Sih and Lee, 1993)] was

proposed for both homogeneous and heterogeneous environment. The DLS

algorithm for homogeneous environments, determines the task priorities by

computing a dynamic attribute calleddynamic level (DL). TheDL of a task-

processor pair is denoted asDL(vi , p j), and reflects how wellvi andp j are

matched. TheDL is determined by two terms. The first term is the Static

Level (SL) of the task which in this case is equal to theb-levelattribute and

the termmax(t,DA(vi, p j)) which denotes the time at whichvi can start

execution (ST) onp j , as it receives the last data transfer from their prede-

cessors. Thus,DL is determined bySL(vi)−ST(vi , p j). At each step, the

algorithm computes theDL for each ready task on every candidate proces-

sor. The task-processor pair which gives the largest value of DL among

all other pairs is selected for scheduling. This process is repeated until

all the tasks are scheduled. At this point it is assumed that all processors

are homogeneous. Thus, the static levelSL(vi) loses its meaning when the

processors are heterogeneous. The authors adapted the DLS algorithm to

consider heterogeneous processors by modifying the definition of DL. A

key new term∆(vi , p j) = E ∗ (vi)−E(vi , p j) is added to the expression of

DL, denoting the varying processing costs.E ∗ (vi) is the median of ex-

ecution times ofvi over all processors andE ∗ (vi, p j) denotes the cost of

executingvi on p j . A large positive∆(vi , p j) indicates thatp j executedvi

more rapidly than most processors, while a large negative∆(vi , p j) indi-

cates the opposite.

We notice that the DLS algorithm is one of the earliest algorithms to con-

sider heterogeneous processors. Other recent algorithms tend to include

static information about the heterogeneous processors when defining the

static level attribute (i.e.,b-level) [(Topcuoglu, 2002)].

2.5. Task Mapping Heuristic Strategies 17

• The Earliest Start Time (EST)algorithm was proposed for homogeneous

processors [(Graham, 1969)]. The notion behind the algorithm is to start

executing a task as early as possible. This version assumes that commu-

nication costs are zero. The algorithm maintains a list of ready tasks. At

each step, the algorithm determines the predicted start time of the task on

each processor. The computation of this time depends upon the availability

of the processors and the predicted finish time of the predecessors. Then,

the task is mapped onto that processor which allows the minimum earliest

start time.

• TheEarliest Completion Time (ECT)algorithm seeks to execute a task as

soon as possible [(Wang and Cheng, 1992)]. It considers homogeneous

processors and assumes that communication costs are zero. At each step,

the algorithm determines the predicted completion time of the task on each

processor. The computation of this time depends upon the predicted start

time of the task plus the expected execution time of the task on the proces-

sor. Thus, the task is mapped onto the processor which allowsthe minimum

earliest completion time.

• The Heterogeneous Earliest Finish Time (HEFT)algorithm [(Topcuoglu,

2002)] is a natural evolution of theECT algorithm to heterogeneous en-

vironments, since usingECT with heterogeneous processors might lead

to poor predictions. HEFT has two major phases: atask prioritizing phase

for computing the priorities of all tasks and acandidate processor selection

phasefor selecting the tasks in the order of their priorities and scheduling

each selected task onto that processor which allows the task’s earliest fin-

ish time. The major adaptation to consider heterogeneous processors was

in the task prioritizing phase. HEFT considers static knowledge about the

heterogeneous processors by maintaining for each task, thecomputation

cost of the task on each heterogeneous processor. Obviouslyin homoge-

neous environments, the computation cost is the same for allthe proces-

sors. This knowledge is used to determine the computation weight of a

node, which now is part of the formula to compute the rank of the task. In

HEFT the computation weight of a node is approximated by the average of

its weights across all processors. In [(Zhao and Sakellariou, 2004a)], it is

shown that there are different schemes for computing the weights of a task

and depending on the scheme used, the makespan of the application may

18 Chapter 2. Review of Literature

be affected.

3. Clusteringbased heuristics consist of two phases: the clustering-phase in which

tasks are grouped into clusters and the mapping-phase in which the clusters are

mapped onto processors [(Gerasoulis and Yang, 1992), (Gerasoulis and Yang,

1993)]. The clustering-phase is as follows. Initially, each task is considered

a cluster. Then, two clusters are merged if the merging helpsto optimize an

objective function (i.e., reduce the completion time). Themerging process con-

tinues until no more merging is possible. The notion behind the method is that

by grouping tasks into the same cluster, it is possible to reduce the amount of

communication among the tasks. Thus, the tasks grouped intothe same cluster

are allocated to the same processor. An important characteristic of this heuristic

is that it allows scheduling decisions based on global aspects (e.g., critical path),

which it is believed could derive better solutions. Then, the mapping phase will

allocate the tasks of each cluster onto the same processor. For the case in which

the number of clusters created is greater than the number of processors, usually

there is an extra merge process in which a further merge is performed with the

considered clusters [(Eshaghian and Shaaban, 1994)]. Next, we discuss some of

the well known clustering algorithms.

• The Edge-Zeroing (EZ)algorithm [(Sarkar, 1989)] selects clusters for merg-

ing base on the edge weights. This algorithm computes theb− level value

for each task and creates sorted list of edges in a descendingorder of edge

weights. Thus, at each step it selects the largest edge weight and zeros the

edge weight if the completion time (CP) is not increased. When two clus-

ter are merged then all the edges involving these two clusters are zeroed.

The ordering of tasks within a particular cluster is based ontheir b− level

value.

• The Linear Clustering (LC)algorithm [(Kim and Browne, 1988)] considers

the critical path (CP) to merge tasks into a single cluster. The algorithm first

determines the set of tasks forming the CP, then such tasks are merged into

a single cluster, zeroing all the edges and removing all the edges incident

to the critical path (decoupling the cluster). Obviously bydecoupling the

cluster formed by the tasks in the CP, the DAG will have a new CP. This

process is repeated until all the tasks are clustered.

2.5. Task Mapping Heuristic Strategies 19

• The Dominant Sequence Clustering (DSC)algorithm [(Yang and Gera-

soulis, 1994)] introduces the Dominant Sequence (DS) of a DAG as the

length of the critical path during the process. This means that this algo-

rithm attempts to reduce the DS by clustering tasks. Obviously at the be-

ginning of the process the length of theCP is equal to the length of the DS.

Initially, the t-levelattribute is computed for each task and an ordered list

of tasks in decreasing order oft-level is created. Then, for each task in the

list, the algorithm is able to distinguish those tasks whichare part of the DS

and those which are not. Thus, if the task selected is part of the DS then it

merges the task with one of its parents if such a merge reducesthe length

of the DS by zeroing the edge, otherwise the task is considered as a new

cluster. This means that the decisions are made based on the global impact

on the expected execution time. If the task is not part of the DS, then it

merges the task with one of its parents if such a merge reducesthe t-level

value of the task.

4. Task Duplication based heuristics (TDB)considers the replication of tasks as

a strategy to reduce the schedule length (makespan) [(Papadimitriou and Yan-

nakanis, 1990), (Kruatrachue and Lewis, 1988), (Bansal et al., 2003), (Ahmad

and Kowk, 1998)]. The notion behind this method is to use resource idle-times to

replicate parent tasks to reduce the waiting time of dependant tasks. Basically,

the key aspect in this strategy is to identify those criticaltasks to replicate. A

pair of strategies can be distinguished: The first strategy considers replication of

some parent tasks based on a particular criterion. The second strategy considers

the replication of all the possible parent tasks. Next we describe some of the

well known task duplication algorithms.

• TheDuplication Scheduling Heuristic (DSH)algorithm [(Kruatrachue and

Lewis, 1988)] uses the idea of list scheduling algorithms combined with

duplication of tasks to reduce the makespan. As in list scheduling algo-

rithms, it creates a task list sorted by the static attributeb− level. Then, it

selects a task from the list and it predicts the start time of the task on a par-

ticular processor as follows: first compute the start time ofthe task on the

processor. Next, it evaluates if duplicating the predecessors can reduce the

predicted start time of the task. The duplication process tries to find an idle-

time slot of the processor and it will insert the duplicated predecessor tasks

20 Chapter 2. Review of Literature

until either such a slot is not available or the start time of the task can not

be improved further. The process is repeated until all the tasks have been

allocated onto processors. DSH duplicates tasks where necessary, avoiding

redundant duplications, to reduce the overall communication delay.

• TheBottom-Up Top-Down Duplication Heuristic (BTDH)algorithm [(Chung

and Ranka, 1992)] is an extension of the DSH algorithm. The major im-

provement is that BTDH attempts to duplicate the predecessors onto the

processor assigned to their succeeding task even if the idletime-slot is filled

up and it also ignores the effect of increasing the start timewhen duplicat-

ing predecessors. The notion behind the algorithm is that the start time may

eventually be reduced by duplicating all the necessary predecessors.

• TheCritical Path Fast Duplication (CPFD)[(Ahmad and Kowk, 1998)] is

based on the notion that an accurate identification of the important tasks for

duplication may lead to obtain short schedules. It classifies the nodes in a

DAG into three categories in the order of decreasing importance: Critical

Path Nodes(CPN), In-Branch Nodes(IBN) and Out-Branch Nodes(OBN).

The authors believe that the most important nodes are on the critical path

(CP), as CP is the longest path of the task graph and, therefore, the finish

times of CP nodes (CPNs) bound the final schedule length. An In-Branch

Node (IBN) is a node from which there is a path reaching a CPN. An Out-

Branch Node (OBN) is considered the least important of the nodes, being

neither a CPN nor an IBN. The procedure contains three main parts. First,

it creates a priority list called the CP-Dominant Sequence containing in the

first instance all the tasks on the CP and all the OBNs are appended to the

sequence respecting the precedence constraints. Second, for each task in

the list, it determines the earliest start time of the task oneach candidate

processor and selects that processor which allows the minimum earliest

start time. Third, a minimization-process tries to minimize the start time

of the task by considering duplicating each possible predecessor (starting

from the predecessor whose message arrives last and so on) inthe earliest

idle-time slot of the selected processor. If duplicating a particular prede-

cessor is successful then the start time of the task will be reduced and the

process will try to further minimize, by considering duplicating the next

predecessor. If the duplication is not successful then the minimization-

process stops. The second and third steps continue until there are no more

2.6. Task Mapping Operation Modes 21

tasks in the list.

These algorithms show the close relationship between the parallel application, tar-

get platform and scheduling mechanism. We observe that as the computational en-

vironment evolved from homogenous to heterogeneous environments, which initially

were dedicated heterogenous computing systems (DHCS), themapping strategies were

adapted with particular mechanisms to properly achieve thetask mapping on hetero-

geneous resources.

The advent of emerging technologies such as SHCS will allow scientists and engineers

to build distributed applications to exploit resources at global scale. However, the map-

ping strategies for DHCS, are not capable of addressing the dynamic nature of SHCS,

as they just use static information of the computational resources to make scheduling

decisions before the execution, ignoring that resources may change dynamically over

time. We will consider this issue in the next section.

2.6 Task Mapping Operation Modes

In Section 2.5, we described that some mapping methods addressing the heterogeneity

of the computational resources, are not capable of addressing the dynamic nature of

emerging computational platforms such as SHCS, as they assume that resources are

dedicated and unchanging over time. In the literature, few heuristic mapping methods

have been developed for SHCS [(Maheswaran and Siegel, 1998), (Zhao and Sakel-

lariou, 2004b), (Hernandez and Cole, 2007a), (Hernandez and Cole, 2007c)]. They

include particular considerations of the mode in which the mapping method would

operate. As shown in Figure 2.7, the mode in which strategy mapping methods are

implemented, can be classified as either static or reactive mode.

1. In aStatic mode, all the static information related to the application and com-

putational resources is assumed to be available before the execution. Thus, an

initial static schedule is generated by a particular mapping strategy, launched

to the target architecture and maintained during the execution of the applica-

tion. A pair of assumptions are distinguished: the first assumption is related to

the accurate knowledge about both the DAG application and the computational

system (i.e., task computation times, bandwidth, data dependencies and commu-

nication times among tasks). The second assumption states that the resources

are dedicated and the fluctuations in the variability of resources are minimum.

22 Chapter 2. Review of Literature

Scheduling algorithms designed forhomogeneousenvironments (e.g., parallel

computers) or some others designed forheterogeneousenvironments with a tight

degree of control over resources such as DHCS, fit in this mode. We will refer

to mapping methods operating in static mode as static mapping methods.

2. Reactive modeis based on the notion that maintaining an initial static schedule in

computational environments where the performance of resources may vary over

time, even during the execution of the application, may affect the predictions and

eventually, the performance of the application. Thus, mapping strategies operat-

ing in reactive mode seek to incorporate dynamic information into the scheduling

decisions. To achieve this, reactive approaches constantly monitor the state of

both the progress of the application and performance of resources before tak-

ing scheduling or rescheduling decisions. We will refer to mapping methods

operating in reactive mode as reactive mapping methods. Thereactive mode

can be classified into eitherreschedulingor run-time schedulingschemes. The

reschedulingscheme, is related with cyclic use of a mapping method over time.

The notion behind the rescheduling mechanism is to refine an initial schedule

over time, taking into account the most recent performance information of the

resources and the progress of the application. Based on the criterion on which the

application is rescheduled, two different approaches are observable: remapping

points and events. Remapping (or rescheduling) points set over time will deter-

mine the moment at which the application must be rescheduled. An important

issue is to optimize the cost of the remapping points. Using many rescheduling

points may incur in a high overhead cost, while using fewer rescheduling points

may result in an inadequate reaction to the problem. The other approach is re-

lated to rescheduling the application based on the detection of predefined events

[(Huedo et al., 2004), (Yu and Shi, 2007), (Yu and Shi, 2004)]. [(Hernandez and

Cole, 2007a)] presents an approach which includes the cycleuse of a mapping

method with fixed-period rescheduling point. The details will be presented in

chapter 3.

In [(Zhao and Sakellariou, 2004b)] a rescheduling policy isproposed which at-

tempts to reschedule the application at a few selected points during execution,

expecting to reduce the overhead cost generated by rescheduling the application.

To achieve this, the approach evaluates two different metrics: the spare time and

the slack of a node. The spare time denotes the maximal time that a particular

2.6. Task Mapping Operation Modes 23

predecessor node can execute without affecting the start time of some of its de-

pendent nodes that are either connected by an edge in the DAG or are adjacent

in the execution order of the assigned processor. The slack of a node is defined

as the minimum spare time on any path from this node to the exitnode of the

DAG. This is the maximum delay that can be tolerated in the execution time of

the node without affecting the overall schedule length (makespan). For instance,

if the slack of a node is zero, then it means that the node is critical and any delay

in the execution of this node will affect the makespan of the application.

Another approach in this category can be found in [(Spooner et al., 2005)] where

an iterative invocation of a genetic algorithm is proposed,considering migration

of tasks when a defined performance contract is not achieved.

Our research is focused on task mapping heuristics operating in reactive mode.

Our model allows rescheduling of an executing application in response to signif-

icant variations in resource characteristics, to efficiently execute parallel appli-

cations on SHCS.

In therun-time scheduling, rather than generating a refined schedule over time,

the mapping strategy operates in a manner that progressively schedule blocks of

tasks over time. It uses the run-time information that becomes available from the

execution of previous blocks of tasks to make scheduling predictions for subse-

quent blocks of tasks. The process continues until all the blocks of tasks have

been executed.

TheJust In-time approachis proposed in the Pegasus project [(Deelman et al.,

2004)]. They propose to schedule all tasks at run-time, as they become available.

To achieve this, they designed a mechanism (the partitioner) that partitions the

abstract workflow (DAG) into smaller partial workflows. The dependencies be-

tween the partial workflows reflect the original dependencies between the tasks

of the abstract workflow. Once the partitioning is performed, Pegasus maps

and submits the partial workflows to the dynamic system as follows: If there is a

dependency between two partial workflows, Pegasus is made towait (by [(DAG-

man, 2002)]) to map the dependent workflow until the preceding workflow has

finished executing.

Another approach is proposed in [(Maheswaran and Siegel, 1998)], where a hy-

brid remapper is presented to dynamically schedule DAG applications. It as-

sumes that an initial schedule is provided as an input. The hybrid remapper

24 Chapter 2. Review of Literature

executes in two phases: in the first phase, prior to the execution, it partitions the

DAG into blocks (the levels of the DAG) such that the subtaskswithin a block

(level) are independent. The second phase of the hybrid remapper, executed dur-

ing application run-time, involves the execution of tasks proceeding from the top

block (the highest level) to the bottom block. Thus, it uses the run-time infor-

mation that becomes available from the execution of previous blocks of tasks

to make scheduling predictions for subsequent blocks of tasks and eventually

remap the remaining blocks of tasks. This approach is similar to the just-in-time

approach, the difference is that the remapper allows the execution of several

blocks in an overlapped fashion.

Rescheduling Run−time

Scheduling

Static Reactive

Task Mapping Operating Modes

Figure 2.7: Taxonomy of Task Mapping Operation Modes

2.7 Data Awareness Taxonomy

In this section we describe another dimension of the mappingmethods for SHCS. It

concerns the treatment of the results of completed tasks, which can be an important

issue if the applications are large and complex. Thus, as shown in Figure 2.8, map-

ping methods for SHCS can be classified in two main categories: data-aware and data

unaware.

The data-aware approachincludes mechanisms to consider results of completed

tasks (i.e., output files) over execution. In [(Hernandez and Cole, 2007c)], theGTP/c

model is presented. This proposes the reuse of data for migrated tasks in order to re-

duce the impact of migration cost on makespan. This may be relevant in applications

with a relatively high number of tasks and data transfers (i.e., data-intensive applica-

tions). Details of theGTP/c model will be presented in chapter 3. We notice that this

2.8. Taxonomy of Fault Tolerance Mechanisms 25

Data Consideration Mechanisms

Data Aware Data Unaware

Figure 2.8: Data Awareness Taxonomy

approach assumes data-storage of sufficient size on each processor to perform all the

data transfers among tasks. A complementary work can be found in [(Ramakrishnan

et al., 2007)], which considers data-storage constraints when scheduling data inten-

sive applications. Their approach is two-fold: they minimize the amount of space a

workflow requires during execution by removing results of completed tasks (i.e., out-

put files) at runtime when they are no longer required and theyschedule the workflows

in a way that assures that the amount of data required and generated by the work-

flow fits onto the individual processors. Most of the approaches in the literature are

data-unaware, and do not take into account data-storage constraints.

2.8 Taxonomy of Fault Tolerance Mechanisms

Although, the reactive scheduling strategies described inSection 2.6 react in response

to significant variations in resource characteristics, they are not necessarily able to react

to processor failure during execution. Fault tolerance is an important issue in SHCS

as the availability of resources cannot be guaranteed. Somework has been conducted

to design fault tolerant mechanisms for DAG applications [(Medeiros et al., 2003)] to

preserve the execution of the application despite the presence of a processor failure. In

Figure 2.9, we show a fault tolerance mechanisms taxonomy, similar to that proposed

in [(Hwang and Kesselman, 2003)]. Fault tolerant mechanisms can be classified in

two major categories according to the level. The first category is attask level, in which

just the knowledge about the task (i.e., processor assigned) is used to redefine just the

status of a particular failed task. The second category is atapplication levelin which

more knowledge (i.e., status of predecessors and successors) is required to redefine the

whole status of the application in order to address the failure.

The task levelcategory groups several strategies such as retry, alternate resource,

checkpoint/restart and task duplication. The retry approach simply considers a num-

ber of tries to execute the same task on the same resource after detecting the failure

26 Chapter 2. Review of Literature

Fault Tolerance Mechanisms

Task level Application level

 resource Restart Duplication
Rescue User−defined RewindingRetry Alternate Checkpoint/ Task
File Exception

 Handling

Figure 2.9: Fault Tolerance Mechanisms Taxonomy

[(DAGman, 2002), (Taverna, 2004)]. The checkpoint/restart approach usually saves

the computation state over time, such that it migrates the saved work of failed tasks

to other processors, so that the tasks can resume execution from the failure point

[(Jalote, 1994), (Condor, 2001)]. The task duplication approach selects tasks for dupli-

cation, hoping that one of the replicated tasks will finish successfully in case of failure

[(Abawajy, 2004), (In et al., 2005)].

The application levelcategory groups several strategies: Rescue file, Redundancy,

User-defined Exception Handling and Rewinding. The rescue file mechanism is pro-

posed in [(DAGman, 2002)]. Such a mechanism consists of the resubmission of un-

completed portions of a DAG when one or more tasks resulted infailure. If any task in

the DAG fails, the remainder of the DAG is continued until no more forward progress

can be made due to the DAG dependencies. At this point, DAGManproduces a file

called a Rescue DAG (input file), containing information about the progress of the

DAG (unfinished and successfully finished tasks). Then, using this Rescue DAG as in-

put file, the unfinished tasks are resubmitted. The User-defined Exception Handling is

proposed in [(Hwang and Kesselman, 2003)] to allow users to give a special treatment

to a specific failure of a particular task. A rewinding mechanism is proposed in [(Her-

nandez and Cole, 2007b)] to address a processor failure. Therewinding mechanism

seeks to preserve the execution of the application by recomputing and migrating those

tasks which will disrupt the forward execution of succeeding tasks. The mechanism

rewinds the progress of the application to a previous state,thereby preserving the ex-

ecution despite the failed processor(s). Details of the mechanism will be presented in

Section 3.5.

2.9. Global Scheduling Simulators 27

2.9 Global Scheduling Simulators

In the literature, we find simulators which allow building and testing mapping methods

for distributed environments. The major objective of the simulators is to provide a

framework to model, evaluate and compare scheduling strategies in a repeatable and

configurable environment.

• Simgrid[(Simgrid, 2001), (Legrand et al., 2003)] is a discrete-event simulation

toolkit. It provides a set of core abstractions and functionalities that can be used

to build simulators for specific application domains and/orcomputing environ-

ment topologies. In Simgrid, resources are modelled by their latency and service

rate. Simgrid provides mechanisms to model performance characteristics either

as constants or from traces. This means that the latency and service rate of each

resource can be modelled by a vector of time-stamped values (or traces). Traces

allow the simulation of arbitrary performance fluctuationsin computational re-

sources. The user is responsible for scheduling computations and communica-

tions in the right order (in the case of DAGs) on the right resources.

• GridSim[(GridSim, 2002)], is an object-oriented toolkit implemented in Java for

resource modelling and scheduling simulation. As Simgrid,it is a discrete-event

simulation toolkit, which allows us to investigate and model scheduling mech-

anisms in SHCS. It can be used to simulate application schedulers for single or

multiple administrative domains distributed computing systems such as clusters

and networks of workstations. GridSim simulates time and space-shared re-

sources with different capabilities, time zones and configurations. One main dif-

ference is that GridSim incorporates economic issues, where the implementation

of mapping methods includes deadline and budget constraints in the scheduling

decisions.

• GangSim Simulator[(Dumitrescu and Foster, 2005)] is the result of the enhance-

ment of the Ganglia Monitoring Toolkit [(Massie et al., 2004)]. It was designed

to support studies of scheduling strategies in grid environments, which comprise

potentially large number of resources, resource owners andvirtual organizations

(VOs). It allows us to model not only sites but also components of virtual orga-

nizations such as users and planners. GangSim mainly focus on exploring the

interactions between local and VOs resource allocation policies. GangSim simu-

lates a policy-driven management infrastructure in which policies concerning the

28 Chapter 2. Review of Literature

allocation of resources within VOs and the allocation of resources across VOs at

individual sites interact to determine the ultimate allocation of individual com-

putational resources. In addition, GangSim permits parallel processing and can

combine simulated components with instances of a Ganglia Monitoring Toolkit

running on real resources.

• OptorSim Simulator[(Bell et al., 2003a)] was developed as part of the European

DataGrid project [(Project, 2004)]. OptorSim is a grid simulator distinguished

by including data replication strategies. Thus, OptorSim allows to investigate

scheduling algorithms to ensure effective usage of resources and replication al-

gorithms which involve the creation and management of data replicas at different

sites, in order to optimize the data access time. The scheduling algorithms are

focused on reducing the cost needed to run a job, including the following ap-

proaches: Random (a site is chosen randomly), Access Cost (cost is the time

needed to access all the files needed for the job), Queue Size (cost is the number

of jobs in the queue at that site) and Queue Access Cost (the combined access

cost for every job in the queue, plus the current job). The replication algorithms

are mainly divided in three replication strategies. In the first strategy, the non-

replication option is available. In the second strategy, italways replicates when

a file is requested for processing, deleting existing files ifnecessary. The third

strategy involves an economic model in which sites ”buy” and”sell” files using

an auction mechanism [(Bell et al., 2003b)] .

Other simulators include DAGsim [(Jarry et al., 2000)],Bricks [(Takefusa et al.,

1999)] and Microgrid [(Song et al., 2000)]. The DAGsim project is implemented on

top of Simgrid, and is focused to implement and evaluate DAG mapping methods in

several simulation scenarios. The Bricks project mainly focuses on simulating resource

allocation strategies and policies for global computing systems. In the bricks context,

global computing systems are composed by client-server systems that provide remote

access to scientific libraries and packages running on high performance computing.

Unlike other simulators, Microgrid aims to allow grid researchers to evaluate and ex-

ecute their applications on a virtual grid emulated environment. Microgrid supports

the execution of applications on emulated grid resources, which use the Globus toolkit

[(Foster and Kesselman, 1997)].

2.10. Summary 29

2.10 Summary

In this chapter we have presented a literature review related to our research. It em-

braced the different elements involved the DAG scheduling problem. We reviewed the

heuristic mapping strategies that can be found in the literature. Next, we described

the operation modes in which mapping strategies are implemented, being the reac-

tive mode used to address the task mapping on heterogeneous and dynamic resources.

We described particular issues related to dynamic heterogeneous environments, such

as fault tolerance and data-aware scheduling. We finished this chapter by describing

some simulation toolkits from the literature, to build and test mapping methods.

In the work presented here, we investigate the problem of scheduling DAG applications

on shared heterogeneous computing systems (SHCS), which according to our classi-

fication in Figure 2.1, is an emergent class of heterogeneouscomputing systems, dis-

tinguished by the heterogeneous and dynamic nature of the computational resources.

Classifications in the Figures 2.2 and 2.3 indicate that we follow an application level

scheduling model operating under a centralized architecture scheme. In terms of our

classification in Figure 2.5, we propose a reactive mapping method, which considers

the cyclic (rescheduling) use of a mapping method over time.Our task mapping model

is based on the list scheduling approach, one of the groups inwhich heuristic mapping

methods can be classified according to the taxonomy showed inFigure 2.6. Our inter-

est in the list scheduling approach is the evolvement process observed in the literature

for this scheduling strategy when the computational platform evolves (i.e. from homo-

geneous computing systems to dedicated heterogeneous computing systems). Thus,

with the advent of emerging technologies such as SHCS, we intend to adapt this map-

ping strategy for SHCS. Additionally, list scheduling algorithms usually generate good

solutions in a reasonable amount of time. Our reactive approach is based on the use of

remapping points to reschedule the application. Unlike other reactive approaches (i.e.,

run-time scheduling), we believe that this scheme can help not only to react to dynamic

changes in resources, but to inaccurate predictions from previous schedules. An ex-

tension in our proposed model is related to the data consideration mechanisms (see the

classification in Figure 2.8) into the scheduling decisionsto improve the utilization of

resources. We consider data reuse of the results of completed tasks over the execution

of the application, which can be an important issue if we consider the data-storage

constraints. Finally, we propose a fault tolerant mechanism at the application level

(see the classification in Figure 2.9), to preserve the execution of the DAG application,

30 Chapter 2. Review of Literature

despite the presence of a processor failure. Unlike other fault tolerant approaches, our

model is distinguished by considering recomputation and migration of tasks which had

already finished, but which will disrupt the forward execution of succeeding tasks. For

instance, those preceding tasks already executed on the failed processor still transmit

data to succeeding tasks.

Chapter 3

The Global Task Positioning (GTP)

Models

Our research considers the problem of scheduling parallel applications, represented

by directed acyclic graphs (DAGs), on SHCS. The core issues are that the availability

and performance of resources, which are already by their nature heterogeneous, can be

expected to vary dynamically, even during the course of an execution. This chapter de-

scribes our proposed model to address the dynamically heterogeneous nature of SHCS.

The description is divided into three main parts. The first part defines the Global Task

Positioning (GTP) scheduling system, a list-scheduling heuristic based model, which

addresses the problem by allowing rescheduling and migration of the tasks of an exe-

cuting application, in response to significant variations in resource characteristics. The

term Global denotes the coordinated collaborative environment of shared resources

potentially located at global scale, made possible by advances in network technology.

The second part, based on observations of previous results for GTP, proposes a new

version of the model calledGTP/c, in which re-use of information is introduced, to

improve the utilization of resources and to minimize the impact of the migration cost on

the application makespan. Finally, the third part exploresthe case of extreme variation

of dynamic resources (i.e., processor failure), for situations in which the availability of

computational resources cannot be guaranteed. Effective DAG mapping methods for

SHCS must include fault tolerant mechanisms to preserve theexecution of DAG ap-

plications despite the presence of a processor failure. To address this, we designed the

rewinding mechanism, which preserves the execution of the application by recomput-

ing and migrating those tasks which will disrupt the forwardexecution of succeeding

tasks.

31

32 Chapter 3. The Global Task Positioning (GTP) Models

3.1 Description of the GTP Model

Our overall system is sketched in Figure 3.1, whereITG represents the task graph, STG

contains dynamic information concerning the progress of the tasks, and SRP contains

dynamic information concerning the current performance ofthe shared resources in

SHCS. We will define these structures more formally during the content of this chapter.

Our model assumes that the initial task graph is given as theITG structure, together

with the initial model of resources as theSRPstructure. An initial scheduleµ0 is

generated by a standard static mapping method (e.g., HEFT).After this, the initial task

graph is copied into theSTGstructure and the initial schedule is launched to SHCS.

Our model addresses the dynamic nature of SHCS with cyclic use of a mapping method

to react to dynamic changes in resources. We will refer to each cycle as arescheduling

point (RP). We consider a fixed frequency rescheduling cycle during execution. The

selection of the rescheduling cycle frequency is discussedin Section 4.2. At each

rescheduling point the dynamic information describing theprogress of the application

(tasks and data transfers) is updated inSTG. In the same manner, the latest information

about resource performance is updated inSRP. Then, given the latest information

about both resources and application, our model generates arefined scheduleµt , aiming

to minimize the estimated makespan of the application. It considers migration of tasks

when the cost of the migration itself is outweighed by the global time saved due to

execution at the new site. The cyclic process continues until the application finishes

execution.

3.1.1 Definition of the SHCS

To represent Shared Resource Pools (SRP) (see Figure 3.2(c)), we will use graphs

SRP:: (P,L,avail,bandwidth) whereP is the set of available processors in the system,

pi(1≤ i ≤ |P|). We assume data storage of sufficient size on eachpi ∈ P to perform

all the data transfers among tasks.L is the set of communication links connecting

pairs of distinct processors,l i(1 ≤ i ≤ |L|) such thatl(pm, pn) ∈ L denotes an undi-

rected communication link betweenpm and pn. We assume that the intra-processor

communication cost(pm = pn) is negligible. We assume that the processors are fully

connected. Our dynamic scheduling decisions will be based upon the latest avail-

able resource performance information (as returned by standard Grid monitoring tools

such as NWS[(NWS, 2002)] or Globus MDS[(MDS, 2000)]). Thus,at timet we as-

sume knowledge ofavailt :: P → [0..1], capturing the availability of each CPU and

3.1. Description of the GTP Model 33

Schedule

Static

µ0

µt

Reschedule

D
at

a

SHCS

Schedule Generation (only once at the beggining)
Schedule Evaluation (Rescheduling)
Schedule Feedback (only once at the end)

SHCS monitoring information

Application monitoring information

Application Feedback

ITG

P
ro

ce
ss

SRP

SRP

G

G

STG

SRP STG

Figure 3.1: The Global Task Positioning (GTP) mapping method

bandwidtht :: L → Float capturing the available bandwidth on each link. We note that

the modelsGTPandGTP/c described in Section 3.2 and Section 3.3 respectively, as-

sume|availt > 0| in resources. The rewinding mechanism described in Section3.5 ad-

dresses the case of extreme variations when the variabilityis equal to zero (availt = 0).

3.1.2 Definition of the Input Task Graph (ITG)

Static information about the DAG application (see Figure 3.2(a)) is represented by an

input task graph ITG:: (V,E,data,W). V is the set of tasks,vi(1≤ i ≤ |V|). E ⊆V×V

is the set of directed edges connecting pairs of distinct tasks, ei(1 ≤ i ≤ |E|), where

e(vi ,v j) ∈ E denotes a precedence constraint and data transfer from taskvi to taskv j .

An edgee(vi ,v j) ∈ E implies thatv j cannot start execution untilvi finishes and sends

its results tov j . For future convenience, we define the notationPred(vi) to denote the

subset of tasks which directly precedevi andSucc(vi) to denote the subset of tasks

which directly succeedvi . Those tasksvi such that|Pred(vi)|= 0 are called entry tasks

and|Succ(vi)|= 0 are called exit tasks. We assume that information about data transfer

sizes and task computation times are provided in standard units, compatible with those

of our bandwidth and computational performance measures. We usedata:: V ×V →

Int to describe the size of data transfers, such thatdata(i, j) denotes the amount of data

to be transferred fromvi to v j . Remembering that our processors are heterogeneous,

34 Chapter 3. The Global Task Positioning (GTP) Models

we represent computation times (see Figure 3.2(b)) withW :: V × P → Int, where

W(i,m) denotes the execution time in standard units of taskvi on processorpm, when

working at full availability (i.e., availability 1 in termsof functionavail). In practice

this information may be difficult to obtain, and concrete realizations of such systems

may have to rely upon programmer estimates, information from previous runs and

other ad-hoc methods. For applications which are executed repeatedly, information to

initializeW could be maintained from one run to the next. We will factor inthe effect

of dynamically affected processor availabilities and linkbandwidths during execution.

For future convenience, since given they will be traversed in a top-down fashion, we

useLevel(vi) to denote how deep in terms of number of edges, a taskvi is from the entry

node. In the same manner we can compute the inter-dependencies levelIDL(e(vi ,v j))

for a particulare(vi ,v j) ∈ E, which denotes how deep in terms of number of edges,

a taskvi is from the taskv j . We notice that the impact of the mechanism through

which communication of task results is achieved, is not fully explored. In terms of the

communication model among tasks, we observe two main modelsto allow the transfer

of data among tasks, thePUSH modeland thePULL model. In the PUSH model,

as soon as a task finishes execution, it pushes the data resultto its successors to be

executed. In the PULL model, as soon as a task is mapped on a particular processor,

it requests to pull the data needed from its predecessors. Wewill show in Section 5.7

that ignoring this issue may negatively affect the performance of the application.

3.1.3 Definition of the Situated Task Graph (STG)

Just as we maintain dynamic informationavail and bandwidthon theSRP, so we

must maintain additional dynamic information on the progress of the DAG execution.

We model this by augmenting the staticITG, to form aSituated Task Graph STG.

This includes information on current schedule of tasks, partial completion of tasks

and partial completion of communications. This is necessary, together with monitored

information on the availability of processors and links, toallow us to iteratively com-

pute improved schedules, taking into account migration costs and resource availability

changes. A key new concept is that of theplaced task. A task is said to becomeplaced

on a processor once it has begun to gather its input data on that processor. A task

which has merely been assigned to some processor by the current schedule is said to

benon-placed. The distinction is important because of its impact on migration costs

associated with data retransmission. The decision to migrate a non-placed task will

3.1. Description of the GTP Model 35

0

1 2 3 4 5

14

9

7

10

20

30

40

50

0

60

70

9

0 12 13 9 11 75

Task P1 P2 P3 Wi,j Ru

 1 10 15 11 12 58

 2 13 10 8 10 54

 3 15 11 13 13 54

 4 9 12 10 10 59

 5 8 7 12 9 60

 6 8 10 7 8 37

 7 5 8 7 6 33

 8 11 13 10 11 37

 9 20 16 17 17 17

b) Computation times of tasks on PE’s

d) Initial Schedule (HEFT)

24

9 7 11 8 12

86

10 912

a) DAG application

2 2 4

P1 P2 P3

0

4

2

6

5

3

8
7

1

10

P1 P2

P3

1

11

c) SHCS architecture

Figure 3.2: Example of the elements required by the GTP model

incur no migration cost because retransmission of data is not needed.

We defineSTG:: (V,E,data,W,Π,κcκd), where the first four components are

taken directly from the correspondingITG. We useΠ :: V → P+ to represent place-

ment information. P+ representsP augmented with the special valueNONE. For

placed tasksvi , Π(vi) indicates the corresponding processor. For non-placed tasks vi ,

Π(vi) = NONE. A placed task remains placed until migrated or until the whole appli-

cation terminates, because even after task completion we will later need to retrieve (or

re-retrieve in the case of migration) its results.

We assume that information concerning the progress of computations and commu-

nications is made available by monitoring mechanisms at each rescheduling point. We

useκc :: V → [0..1] to capture the proportion of a task’s computation which has been

completed, and similarly,κd :: E → [0..1] to capture the proportion of a data trans-

fer which has been completed. The initialSTG is effectively just theITG with all

completions equal to zero and all task placements set to NONE.

36 Chapter 3. The Global Task Positioning (GTP) Models

3.2 The GTPScheduling Method

Before describing the details of theGTPscheduling algorithm, we describe the process

of setting the tasks ranks, the migration model and the costing of candidate schedules.

3.2.1 Setting Task Ranks

As described in Section 2.5, list-scheduling heuristic approaches maintain a list of

unfinished tasks ordered by arank(priority), which is computed statically. Such list

denotes a predicted sequence of tasks execution. There are several methods to statically

set the ranks of tasks for a heterogeneous environment [(Kwok and Ahmad, 1999a)].

We useRu(vi) (also known asblevel), which is an upward rank computed from the exit

node tovi and defined as the length of the critical path fromvi to an exit node.Ru(vi)

is computed recursively as,

Ru(vi) = Wi +maxvj∈Succ(vi)(data(vi ,v j)+Ru(v j)) (3.1)

whereWi is the average execution cost of taskvi across all processors and it is defined

by,

Wi =
(Σ|p|

m=1W(vi , pm))

|P|
(3.2)

Notice that the computation weight of a node is approximatedby the average of its

weights across all processors, following the approach of [(Topcuoglu, 2002)]. There

are other schemes to approximate the weight for nodes and edges of the task graph.

In [(Zhao and Sakellariou, 2004a)], an experimental investigation is conducted into

the rank function of the HEFT algorithm, the same that we use in equation 3.2. They

experiment with different schemes (e.g., mean value, worstvalue) for computing these

weights. They show that the predicted makespan of the schedule created may be af-

fected significantly by the scheme used.

Thus, following the example for the DAG shown in Figure 3.2(a), the computed val-

ues ofWi andRu for each task are displayed in Figure 3.2(b). For instance, for task

V2, W(v2) = (13+10+8)/3 = 10 andRu(v2) = 10+max(7+Ru(v6),11+Ru(v7)) =

54. Once the set of ranksRu are computed for all tasks, then the list of unfinished

tasks ordered byRu is determined. For the DAG shown in Figure 3.2(a), the list is

{v0,v5,v4,v1,v2,v3,v6,v8,v7,v9}. SinceRu(vi) is an upward rank computed from the

3.2. The GTPScheduling Method 37

exits nodes to the entry nodes and it considers the edges in the computation, for a par-

ticular precedence constrainte(vi ,v j), Ru(vi) > Ru(v j). Furthermore, its value remains

the same over time despite the varying status of eachv j ∈ Pred(vi). This means that

task ranks are computed just once during the cyclic process.

An interesting issue in this section is related to the fact that a particular taskvi may

be faster than some other taskv j on some processorpx, but slower than the same task

on another processorpy. This is related to the heterogeneity of resources in SHCS.

For example, this can be seen for the DAG shown in Figure 3.2(a), for tasksv0 and

v5. One reason to explain this, is that in the real world, there are some tasks which are

more suitable for a particular processor, for instance a task involving data parallelism

is more suitable for vector machines, however the same task executed on network of

workstations may be not so efficient. This is reflected in the computation costs.

3.2.2 The Task Migration Model in GTP

A placed taskvi is migrated when it has been rescheduled onto a processor other than

Π(vi). In our costings, we adopt a pessimistic model, in which the migrated task

must be restarted from the very beginning, including regathering all inputs from its

predecessors. This is illustrated in Figure 3.3 with a hypothetical case. AtRPn, the

tasksv1 andv2 were executed atp1 andp3 respectively and taskv3 was scheduled to be

executed atp4 after receiving the data required. However it has so far justreceived data

from v1. By considering the current status of both resources and application, the model

reschedules the application andv3 is migrated fromp4 to p2, expecting to be executed

at some point beforeRPn+1. Thus, data fromPred(v3) must be totally retransmitted to

p2. At RPn+1 we have the same situation. The requirement was partially fulfilled as

just v2 successfully transmitted the needed data tov3. Again, after updating both the

performance of resources and progress of tasks, the model reschedules the application

andv3 is migrated back to processorp4, expecting to be executed beforen+2. Now,

at n+ 2, we observe thatv3 is finally executed after receiving the required data from

Pred(v3). We notice that taskv1 sent the data twice to the same processorp4 as a result

of the pessimistic model used byGTP. Obviously, in more complex DAGs, this will

tend to increase the overhead cost and the makespan of the application. In Section 3.3

we will consider a more sophisticated method to improve the utilization of resources

and minimize the impact of the migration cost on makespan, byexploiting copies of

results.

38 Chapter 3. The Global Task Positioning (GTP) Models

P1

P2

P3

P4 v3

v3

v3

v1

v2v0

P1

P2

P3

P4

P1

P2

P3

P4

P
la

ce
m

en
ts

tn n+1 n+2Rescheduling Points

Executed Task

Data Transfer Completed

Data Transfer Estimated

e(v2−v3)

e(v1−v3)

e(v2−v3)

e(v1−v3)

e(v2−v3)

e(v1−v3)

e(v0−v1)

Scheduled Task

Figure 3.3: The Migration Model in GTP

3.2.3 Costing of Candidate Schedules

Our cost prediction approach is based upon redefinition of concepts drawn from the

standard scheduling literature [(Kwok and Ahmad, 1999a), (Topcuoglu, 2002)], to-

gether with some additional operations required by the dynamically heterogeneous

nature of our target system.

3.2.3.1 Estimating Communication Cost

During (re)scheduling at timet, we need to predict how much time will be required

to transfer data for various candidate assignments of tasksto processors. In general,

this will depend upon the processors involved and any existing partial completion of

the transfers. Theestimatedcommunication cost in standard-units to transfer data

associated with an edgee(vi ,v j) from pm (processor assigned tovi) to pn (processor

assigned tov j) is defined by,

Ct(vi , pm,v j , pn) = StartU p+
datat(vi ,v j)

bandwidtht (pm, pn)
(3.3)

StartUp is the system dependent fixed timets taken between initiating a request for

data and the beginning of the data transfer, and is thereforeonly applicable to trans-

fers which have not already begun (including the migrated tasks as we explained in

Section 3.2.2),

3.2. The GTPScheduling Method 39

StartU p= ts, if























(κd(vi ,v j) = 0 and pm 6= pn) or

(Π(vi) 6= pm) or

(Π(v j) 6= pn)

(3.4)

being 0 otherwise. Equation 3.4 captures the situation in which a non-zero start-up

cost is counted: either the transfer has not yet begun, or thesource and/or destination

are not those previously associated with the transfer (i.e., a migration has occurred).

datat(vi ,v j) denotes theremaining volumeof data to transmit from taskvi to taskv j at

time t and is computed as

datat(vi,v j) = data(vi,v j)∗ (1−κd(vi ,v j)) (3.5)

3.2.3.2 Estimating Computation Cost

In estimating the value of candidate schedules we need to predict the time at which

some task could begin execution on some processor and the time at which that execu-

tion will finish. These times depend upon the availability ofthe processors (which may

have other tasks to complete first) and the availability of input data (which may have

to be transferred from other processors). We must first definetwo mutually referential

quantities.ESTt(vi , pm) is theEstimated Start Timeof taskvi on processorpm where

the estimate is made at timet. For tasks which have already begun (or even completed)

on pm at t, EST will bet (the effect of already completed work will be allowed for in

EFT).

ESTt(vi , pm) = t, if







µt(vi) = pm and

κc(vi) > 0,
(3.6)

For other tasks it will be determined by the need for predecessors ofvi to complete and

send their data topm.

ESTt(vi, pm) = max{PAt(pm),DAt(vi)} (3.7)

wherePAt(pm) is a function which returns the time at which the processor becomes

available, having completed other tasks. We notice that ourmodel uses a non-insertion

approach to fill the available capacity of processors, therefore the function will return

the latest estimated finish time among tasks already assigned to pm.

40 Chapter 3. The Global Task Positioning (GTP) Models

PAt(pm) = max{vi | (µt (vi)=pm)}{EFTt(vi , pm)} (3.8)

Meanwhile,DAt(vi) is the estimated earliest time at which data from a predecessor

taskv j (mapped onµt(v j)) will be available atpm.

DAt(vi) = maxv j∈Pred(vi){EFTt(v j , pk)+Ct(v j , pk,vi , pm)} (3.9)

The max block in equation 3.9 returns the estimated time of arrival of all data needed

to execute taskvi onto processorpm. This is calculated by considering the evolving

status of eachv j ∈ Pred(vi). Similarly, EFTt(vi , pm) is theEstimated Finished Time

of the computation of taskvi on processorpm. For already completed tasks (att) we

will have

EFTt(vi, pm) = t,if κc(vi) = 1, (3.10)

For other tasks it will be determined by the quantity of work outstanding and the avail-

ability of pm.

EFTt(vi , pm) = ESTt(vi , pm)+Wt(vi , pm) (3.11)

whereWt(vi, pm) denotes the amount of work still to completed for taskvi on processor

pm, defined by

Wt(vi , pm) =
W(vi , pm)∗ (1−κc(vi))

availt(pm)
(3.12)

As with communication cost prediction, migrated tasks mustbe costed for a restart

from scratch (i.e., we resetκd(vi ,v j) = 0). We note that our model ignores possible

contention in communication by effectively assuming an infinite number of links from

pm to pn (the assumption is implicit in themax in equation 3.9). We are aware that

this assumption may affect the predictions of the schedulesgenerated by our models.

In the literature we find some scheduling methods [(Sinnen etal., 2006), (Sinnen and

Sousa, 2005), (Agarwal et al., 2006)] which consider trafficcontention in their schedul-

ing decisions. The discrepancy between real and predicted times is incorporated into

our rescheduling as a result of the difference between actual completion information

(κc,κd) returned by monitoring, and that which would have been expected at the pre-

ceding RP. Thus, the overall objective of minimising the real makespan of the DAG

application is achieved by minimising iteratively the estimated makespan.

3.2.4 Scheduling in the GTP Model

The procedure of the GTP model is as follows. The GTP model hasthree main parts:

the first part concernsthe generation of the initial schedule, given the initial task graph

3.2. The GTPScheduling Method 41

in ITG and the initial resource performance information inSRP. We consider that the

initial schedule is generated by a standard static mapping method and launched to the

SHCS. The second part concernsthe cyclic use of the mapping methodwhich has two

principal phases. The first phase isthe computation of task ranks(priorities) for each

task. This phase is performed just once before starting the execution of the application.

After this, in keeping with the principles of list-scheduling, we maintain a list of un-

finished tasks ordered byrank and updated at each RP (removing finished tasks). The

rank determines the order in which tasks are assigned to processors. The second phase

is the costing of candidate scheduleswhich selects each unfinished task from the list

according to its rank (priorities). Then, for each such taskvi , GTPcomputes the esti-

matedEarliest Finished Time(EFT) value for schedulingvi to all processorspi ∈P and

remapsvi onto that processor which offers the smallest EFT. The refined task schedule

generated at timet is represented as a functionµt : V → P such thatµt(vi) = pm de-

notes that taskvi is to be executed by processorpm at t. Notice that forplacedtasks

vi , which have not been migrated byµt , we will haveµt(vi) = Π(vi). Finally, the third

part concernsupdatingthe latest information about both the performance of resources

and the progress of the application into theSRPandSTGstructures respectively. The

second and third components are iterated at RPs, in responseto dynamic changes in

resources. The cycle continues until the application finishes execution.

To illustrate the procedure of theGTPmodel, we will the use the task graph, the target

architecture and the static information about the tasks on processors from Figure 3.2.

Thus, at timet = 0 the information concerning the resources is initialized in SRP (see

Figure 3.4(a)) and the initial information about the application in ITG is copied to

STG (see Figure 3.4(b)). The next step is to generate the initial schedule, which in this

case is generated by using the HEFT algorithm, as shown in Figure 3.4(c). Then, the

initial schedule is launched to the SHCS. We assume a fixed RP of 14, which means

that every 14 time units, a remapping of the application is considered. Note that in

Section 4.2 we discuss how the fixed length of the rescheduling points was chosen.

Following the procedure, at the RP att = 14,SRPis updated with the latest perfor-

mance of resources shown in Figure 3.5(a), where we observe the resource changes in

either processor availability or bandwidth, which occurred from the period of time be-

tweent = 0 andt = 14. l1(p1, p3) varied in bandwidth (from 1 to 0.7) and processorp1

varied in availability (from 100% to 70%) andP2 (from 100% to 40%). The progress

of the application inSTGis shown in Figure 3.5(b). We observe thatv0 has finished

execution,v4 is being executed and the data transfers fore(v0,v1) ande(v0,v5) have

42 Chapter 3. The Global Task Positioning (GTP) Models

v5

v0

70

80

50

60

30

40

10

20

v4

v2v1

v8

v7

v3

v9

v6

0

P1 P2 P3

 Resource Bandwidth Avail (%)

a) SRP structure at t = 0

 p3 − 100
 p2 − 100
 p1 − 100

 L(p1−p2) 1 −

 L(p2−p3) 1 −
 L(p1−p3) 1 −

c) Gantt Chart at time = 0

 Task/Comm. PE weight advance

b) STG structure at t = 0

 V5 2 7 0
 V0 3 9 0

data(v0−v5) (p3−p2) 4 0

 Comm. link weight advance

Figure 3.4: Example (t=0) of the GTP System

been completed.

Then, given the progress of tasks, the list of unfinished tasks is updated and given the

latest information about the performance of resources, themodel reschedule the appli-

cation in response to variability in resources. Thus, following the costing of candidate

schedules, in which tasks are assigned to that processor which offers the minimum

Earliest Finish Time, the refined scheduled is generated andshown in Figure 3.5(c)

where we observe that the new estimated makespan of the application is 94.78 units of

time.

We note that the taskv5 migrated fromp2 to p1 asp1 offered the minimum earliest

finish time. This action requires the retransmission from the very beginning of data

from v0 to v5. Obviously, the migration model will tend to generate migrations only

when the benefits are substantial, and will reduce the potential for schedule thrashing.

Therefore, in terms of our formalization, a migrated task becomesnon-placeduntil it

starts to gather inputs again. For costing purposes, this means that for a migrated task

vi , we must resetκc(vi) = 0 (the computation must restart) andκd(v j ,vi) = 0,∀v j ∈

Pred(vi) (all communications tovi must restart).

3.3. Description of the GTP/c Model 43

v0

v5

v4

v8

v9

** checkpoint
t = 14

 Resource Bandwidth Avail (%)

 p2 − 40

 L(p1−p2) 1 −

 L(p2−p3) 1 −
 L(p1−p3) 0.7 −

 Task/Comm. PE weight advance(%)

 v5 1 7 0
 v0 3 9 100

 p1 − 100

 p3 − 70

 v4 3 10 50

70

80

50

60

30

40

10

20

0

P1 P2 P3

c) Gantt Chart after rescheduling at time = 14

v1

v2v3

v6

v7

100
94.78

data(v0−v5) (p3−p2) 4 100

 Comm. link weight advance

b) STG structure at t = 14

data(v0−v1) (p3−p2) 4 100

a) SRP structure at t = 14

Figure 3.5: Example (t=14) of the GTP System

3.2.5 Time Complexity Analysis for the GTP model

The time complexity analysis is centered inthe cyclic use of the mapping methodpart

which involves two main phases:the computation of task ranksand the costing of

candidate schedules(see Section 3.2.4). The computation of task ranks traverses the

graph upward from the exit nodes which can be done inO(e+v). Then, we have the

sorting of the list of tasks by rank (priorities) which takesO(v× log v). The costing

of candidate schedules which selects a taskvi from the list and maps each task onto

that processor offering the minimum earliest finish time, takesO(e× p) for e edges

and p processors for each cycle. For a dense graph when the number of edgese is

proportional toO(v2), the time complexity for the costing of candidate schedule is of

the order ofO(v2× p). Thus the time complexity for the cyclic use of the mapping

method for each cycle is of the order ofO(v2× p). We will report on actual times for

real examples in Chapter 5.

3.3 Description of the GTP/c Model

TheGTPmodel described in the previous section addressed the dynamically heteroge-

neous nature of SHCS by allowing rescheduling and migrationof tasks when this helps

to minimize makespan. InGTP, a migrated task had to be restarted from the very be-

44 Chapter 3. The Global Task Positioning (GTP) Models

ginning, including regathering all inputs directly from its predecessors. Obviously this

negatively affects the makespan of the application. We observed from experiments

with GTP that as a consequence of the adaptive nature of the model, some results of

some completed tasks transmitted to succeeding tasks, which later on migrate to an-

other processor, can be reused after subsequent migrationsas possible sources of its

required data. To exploit this observation, we extended theGTP model by adding a

Copying Maintenancefunction, resulting in a new version, the Global Task Positioning

with copying facilities (GTP/c) system. The overallGTP/c system is sketched in Fig-

ure 3.3 in which we consider the maintenance of a collection of reusable copies of the

results of completed tasks. This information is maintainedin theSTGstructure which,

as before, contains the dynamic information related to the progress of the application.

Schedule

Static

µ0

µt

Reschedule

D
at

a

SHCS

Schedule Generation (only once at the beggining)
Schedule Evaluation (Rescheduling)
Schedule Feedback (only once at the end)

SHCS monitoring information

Application monitoring information

Application Feedback

ITG

P
ro

ce
ss

SRP

SRP

G

G

STG/c

STG/c
copiesSRP

Figure 3.6: The GTP/c System

3.3.1 Definition of the SHCS

We will take the same definition and assumptions from theGTP model described in

Section 3.1.1 to represent Shared Resource Pools (SRP) in GTP/c. We notice that

GTP/c assumes sufficient storage to maintain the reusable copies on each processor.

A natural danger in real environments is that when the application has a relatively high

number of tasks and data transfers, the copies could overwhelm existing data storage.

3.4. The GTP/cScheduling Method 45

A complementary work can be found in [(Ramakrishnan et al., 2007)], which considers

data-storage constraints when scheduling data intensive applications. Their approach

is two-fold: they minimize the amount of space a DAG application requires during

execution by removing results of completed tasks (i.e., output files) at runtime when

they are no longer required and they schedule the application in a way that assures that

the amount of data required and generated by the applicationfits onto the individual

processors.

3.3.2 The Situated Task Graph with Copying (STG/c)

We extend the definition of the Situated Task Graph structuredefined in 3.1.3 as

STG/c :: (V,E,data,W,Π,κc,κd,Ω), where the first seven components are taken di-

rectly from the previous definition ofSTG. The key new concept is that ofreusable

copy. A data transfer for a particular edgee(i, j) is said to becomereusable copyon

a processor once it has been totally transmitted (κd(e(i, j)) = 1) from Π(vi) to Π(v j).

It is reusablebecause if during the process,v j migrates to a different processor, the

copy may be used as source in subsequent scheduling decisions. The copy will remain

reusable until taskv j finishes execution. The adaptive nature of our model allows mul-

tiple reusable copies for a particulare(i, j), since taskv j can migrate at each RP, if the

benefits are substantial. We hope that reusable copies will help to minimize the impact

of migration on makespan by avoiding unnecessary data transfer between tasks and

exploiting the network links which offers the minimum data transfer cost according to

the latest performance resource information. To do this, weneed to keep information

about everyreusable copygenerated at timet in our model. We useΩk :: E → P (P) to

describe the subset ofP where copies of the given (edge) data are available at timek.

3.4 The GTP/cScheduling Method

In this section we describe the GTP/c method. AsGTP/c is an extension ofGTP, it

has the same three main parts:the generation of the initial schedule, the cyclic use of

the mapping methodand at each cycle,updatingthe latest information about both the

performance of resources and the progress of the application into theSRPandSTG

structures respectively.

46 Chapter 3. The Global Task Positioning (GTP) Models

3.4.1 Setting Task Ranks

We keep the same process to set the task ranks (priorities) from theGTP model de-

scribed in Section 3.2.1.

P1

P2

P3

P4 v3

v3

v3

P1

P2

P3

P4

v2

v1 P1

P2

P3

P4
P

la
ce

m
en

ts

e(v2−v3)

e(v1−v3)

e(v1−v3)

v0

e(v0−v1)

e(v2−v3)

e(v1−v3)

e(v2−v3)

n n+1 n+2RPs

t

a) The GTP model

P1

P2

P3

P4

v3

v3

v1 P1

P2

P3

P4

P1

P2

P3

P4

v0

v3

P
la

ce
m

en
ts e(v1−v3)

e(v2−v3)

v2

e(v2−v3)

e(v0−v1) e(v1−v3)

e(v1−v3)

e(v1−v3) e(v1−v3)

e(v2−v3)

e(v2−v3)

n n+1 n+2RPs

t

b) The GTP/c model

Copy of Data (v1−v3)

Copy of Data (v2−v3)

Data Transfer completed

Data Transfer considered

Figure 3.7: The GTP/c Migration Model

3.4.2 The Task Migration Model in GTP/c

The adaptive nature of theGTP/c model is illustrated in Figure 3.7 where we can

observe the difference of strategies used betweenGTP andGTP/c. In terms of our

formalization a placed taskvi is migrated when it has been rescheduled onto a pro-

cessor other thanΠ(vi). We recall thatGTP uses a pessimistic model, in which the

migrated task must be restarted from the very beginning, including regathering all

inputs directly from the predecessors (see Figure 3.7(a)).Now, with GTP/c, in an

execution with relatively frequent migration, it may be that, over time, the results of

3.4. The GTP/cScheduling Method 47

some task have been copied to several other nodes, and so a subsequent migrated task

may haveseveral possible sourcesfor each of its inputs. Some of these copies may

now be more quickly accessible than the original, due to dynamic variations in com-

munication capabilities. For instance, in Figure 3.7(b), at RPn, taskv3 could not be

executed asv3 only received the required data from taskv1. However, the idea behind

theGTP/c model, is that we now maintain the copy of the result generated by v1 in

the system inΩn(e(v1,v3)) , such that it may be used as an input in future migrations

for v3. Thus, atRPn and after considering the latest information about both resources

and progress of the application, taskv3 is migrated fromp4 to p2 and we observe that

the required data fromv1 can be transmitted from the sitep4 storing the copy or from

the sitep1 wherev1 was executed. The decision to select the site from which the data

will be transmitted will depend upon the prediction of the minimum estimated finish

time which involves the estimated availability of the processors (which may have other

tasks to complete first) and the estimated availability of input data (which may have

to be transferred from other processors). Following the example, atRPn+1, v3 was not

computed as it had only received data fromv2. This creates a new copy in the system

and is maintained inΩn+1(e(v2,v3)) for future migration forv3. At RPn+1 taskv3 is

now migrated fromp2 to p4, and we observe that there are several possible sources for

each preceding task. At the end we observe thatv3 is finally executed, using the copy

Ωn(e(v1,v3)) and a direct data transfer fore(v2,v3).

3.4.3 Estimating the Communication Cost

In the same manner asGTP, during (re)scheduling at timet, we need to predict how

much time will be required to transfer data, now consideringthat the data for a par-

ticular edge may have several copies distributed on severalsites, for various candidate

assignments of tasks to processors. In general, this will depend upon the latest per-

formance information of the link (bandwidth) associated with the processors involved,

the location of the reusable copies generated and any previous partial completion of

the transfers. We retain definitions 3.3, 3.4 and 3.5 for theGTPmodel, to estimate the

communication cost in standard units.

TheCopying Management(CM) function defined in equation 3.13, will return the min-

imum data transfer cost for data associated withe(i, j) to µt(v j). Thus, for a particular

e(i, j), CM evaluates the locations (processors) for each reusable copy in Ωt(e(i, j))

and together with the latest bandwidth of the links involved, returns the minimum data

48 Chapter 3. The Global Task Positioning (GTP) Models

transfer cost toµt(v j).

CMt(vi ,v j) =

minp∈Ωt(e(i, j)){C
t(vi , p,v j ,µ(v j))} (3.13)

3.4.4 Estimating Computation Cost

We retain the equations 3.6, 3.7 and 3.8 for theGTPmodel to predict the time at which

some task could begin execution on some processor. However,in such prediction

we must now include the existing copies which will certainlyaffect the beginning

execution of tasks. Thus, we have redefined the equation 3.9 such that, now the new

equation 3.14 will compute the estimated earliest time at which data from a predecessor

taskv j (mapped onµt(v j) and any available copies of their results) will be availableat

pm.

DAt(vi) = maxv j∈Pred(vi){EFT(v j , pk)+CMt(v j ,vi)} (3.14)

In the same manner, we need to predict the time at which that execution will finish.

For this, we retain equations 3.10, 3.11 and 3.12 for GTP.

As before, migrated tasks must be costed for a restart from scratch (i.e., we reset

κd(vi ,v j) = 0) andGTP/c ignores possible contention in communication by assuming

an infinite number of links frompm to pn.

3.4.5 Procedure of the GTP/c Model

The procedure of the GTP/c model is the same as that followed by the GTP model

described in Section 3.2.4 with the introduction of copies allowing for more flexibility

in scheduling.

To illustrate the procedure of theGTP/c model, we will extend the example of Sec-

tion 3.2.4, in which we used the tasks graph, the target architecture and the initial static

information from Figure 3.2 to follow the procedure of theGTPmodel. Thus, at time

t = 0, the first part related withthe generation of the initial scheduleis the same as

GTPwhere the initial schedule is generated by using the HEFT algorithm and shown

in Figure 3.2(d), followed by their launch to the SHCS. Then,at timet = 14, GTP/c

uses the same sequence of resource changes as that used inGTP, which is updated

in theSRPstructure (see Figure 3.8(a)). The progress of the application is shown in

3.4. The GTP/cScheduling Method 49

** checkpoint
t = 14

v0

 Resource Bandwidth Avail (%)

a) SRP structure at t = 14

 p2 − 40

 L(p1−p2) 1 −

 L(p2−p3) 1 −
 L(p1−p3) 0.7 −

 p1 − 100

 p3 − 70

70

80

50

60

30

40

10

20

0

P1 P2 P3

c) Gantt Chart after rescheduling at time = 14

100

v5
v4

v1
v2v3

v6

v7

v9

93.1

v8

Copy (v0−v5)

b) STG structure at t = 14

 Task/Comm. PE weight advance

 V5 1 7 0
 V0 3 9 100

 V4 3 10 100

data(v0−v5) (p3−p2) 4 100

 Comm. link weight advance

data(v0−v1) (p3−p2) 4 100

data(v0−v3) (p3−p2) 2 0

Copy (v0−v1)

Copies Generated

Figure 3.8: Example of The GTP/c System

Figure 3.8(b) where we observe thatv0 has finished execution,v4 is being executed

and the data transfers fore(v0,v1) ande(v0,v5) have been transmitted. According to

our formalization, two copies have been generated at this point, one ofe(v0,v5) and

one ofe(v0,v1). These copies can be used in future migrations forv5 andv1. Follow-

ing the procedure ofGTP/c, given the progress of the application and given the latest

performance information about the performance of resources,GTP/c reschedules the

application obtaining a new refined schedule shown in Figure3.8(c). In this schedule

we observe that taskv5 migrated fromp2 to p1, and the model decided to use the copy

of e(v0,v5) located onp2, as it allowed the minimum earliest finish time for taskv5, to

retransmit the required data fore(v0,v5). The benefit of such decision is reflected in

the estimated makespan which is now 93.1 units of time (1.80%better than the 94.78

units of time computed for the estimated makespan forGTPshown in Figure 3.4(c)).

3.4.6 Time Complexity Analysis for the GTP/c Model

We focused on time complexity analysis of thecyclic use of the mapping methodpart

which involves two main phases:the computation of task ranksand the costing of

candidate schedules(see Section 3.2.4). As before, the computation of task ranks

traverses the graph upward from the exit nodes which can be done inO(e+v). Then,

50 Chapter 3. The Global Task Positioning (GTP) Models

we have the sorting of the list of tasks by rank (priorities) which takesO(v× logv). The

costing of candidate schedules which selects a taskvi from the list and computes the

earliest finish time value for schedulingvi to all processors, for which it is considered

that the results (copies) of some tasksv j ∈ Pred(vi) can be stored in others sites, takes

O(e× p) for e edges andp processors. For a dense graph when the number of edges

e is proportional toO(v2), the time complexity for the costing of candidate schedule

is O(v2× p). Then the time complexity for the cyclic use of the mapping method for

each cycle is on the order ofO(v2× p).

3.5 Reliable DAG Scheduling with Rewinding and Mi-

gration

In the literature we can find some mapping methods to execute DAG applications on

SHCS. However, most of them (includingGTP andGTP/c) are not able to react to

extreme variations (i.e., processor failure) in some of theprocessors. Effective DAG

scheduling methods for SHCS must include fault tolerant mechanisms to preserve the

execution of DAG applications, despite the presence of resource failure. To address

this, we designed the rewinding mechanism, an event-drivenprocess executed when

a failure is detected at some checkpoint (see Figure 3.9). The rewinding mechanism

preserves the execution of the application by recomputing and migrating those tasks

which will disrupt the forward execution of succeeding tasks. This section describes

the rewinding mechanism and shows how to integrate it withinour reactive mapping

methods. At the end of the section we define some metrics to evaluate the performance

of such mechanism.

Fault tolerance (as reviewed in Section 2.8) is an importantissue in SHCS as the

availability of resources can not be guaranteed. The presence of a resource failure

in a particular processorpm during execution at timet, may disrupt the subsequent

execution of other tasks. The tasks expected to be disruptedcan be grouped as a) those

tasksvi mapped to a processor other thanpm, but still retrieving data from preceding

tasks already executed onpm, and b) those unfinished tasks mapped topm which have

begun to gather input data for execution.

The integration and performance of the rewinding mechanisminto our scheduling

method, is highly dependent upon the details of the scheduling strategies used, en-

compassing issues such as task assignments, data transfers, migration of tasks, data

3.5. Reliable DAG Scheduling with Rewinding and Migration 51

Schedule

Static

Rewinding

µtµ0

D
at

a

Schedule Generation (only once at the beggining)
Schedule Evaluation (Rescheduling)
Only during processor failure

SHCS monitoring information

Application monitoring information

ITG

P
ro

ce
ss

SRP

STGSRP

DAG
Rewound

Reschedule

G

SHCS

STG

GSRP

Figure 3.9: The Rewinding Mechanism

replication and so on. Thus, we identify three main steps to consider in the integration

of the rewinding mechanism into a particular reactive scheduling approach,

1. The first step is related to the integration of the rewinding mechanism with the

data structures containing the information on both the performance of the pro-

cessors composing the SHCS and the progress of the application (i.e.,STGand

SRPdefined below).

2. The second step is related to the procedure of the rewinding mechanism itself,

which will rewind those critical tasks associated with the failed processor which

will disrupt the forward execution of succeeding tasks.

3. The last step is related to particular considerations in the dynamic scheduling

strategy (i.e., copying, data replication) and deals with resetting the information

maintained in the system and linked to the failed processor,to avoid inconsisten-

cies in subsequent scheduling decisions.

52 Chapter 3. The Global Task Positioning (GTP) Models

3.6 The GTP System with Rewinding (GTP/r)

We recall that the GTP system defined in Section 3.2 allows rescheduling and migra-

tion of tasks in response to variations in the performance ofresources. The inclusion

of the rewinding mechanism intoGTPproduces theGTP/r version.

3.6.1 Definition of the SHCS

We have to identify key information related with the processors availability used by

the model. The dynamic information about resources in SHCS has been defined in

Section 3.1.1, in which Shared Resource Pools (SRP) are represented with graphs

SRP:: (P,L,avail,bandwidth) whereP is the set of available processors in the system,

pi(1≤ i ≤ |P|). L is the set of communication links connecting pairs of distinct pro-

cessors,l i(1≤ i ≤ |L|) such thatl(m,n)∈ L denotes a communication link betweenpm

andpn. The decision to rewind the application will be based upon the latest available

resource performance information (as returned by standardGrid monitoring tools such

as NWS or Globus MDS). Thus, at timet we assume knowledge ofavailt :: P→ [0..1],

capturing the availability of each CPU. Failure in some processorpm occurs when the

latestavailt(pm) = 0. Then, at each RP, if a failure is detected then the rewinding

process will be triggered to rewind the application. We notethat failures in traditional

distributed systems are mostly linked to physical failureswhich make the resources

unavailable. However, in our context, in which resources are shared and autonomous,

a failure embraces other situations, which affect the availability of resources. For in-

stance, during the execution of the DAG application, we may have the case, outside

our scheduler’s control, in which a particular processor isassigned to another job with

higher priority.

3.6.2 Definition of the Situated Task Graph (STG)

Just as we use dynamic information about resources onSRPto take decisions about

when to rewind the application, so we must identify the dynamic information related

to the progress of the DAG application to determine which tasks will be rewound.

The information related to the progress of the tasks has beendefined in Section 3.1.1

where we definedSTG:: (V,E,data,W,Π,κcκd). V is the set of tasks,vi(1≤ i ≤ |V|).

E ⊆V×V is the set of directed edges connecting pairs of distinct tasks,ei(1≤ i ≤ |E|),

wheree(vi ,v j) ∈ E denotes a precedence constraint and data transfer from taskvi to

3.6. The GTP System with Rewinding (GTP/r) 53

taskv j . We usedata :: V ×V → Int to describe the size of data transfers, such that

data(i, j) denotes the amount of data to be transferred fromvi to v j . W :: V ×P →

Int, indicates the heterogenous characteristics of the processors composing a SHCS

whereW(i,m) denotes the execution time in standard units of taskvi on processorpm.

Π :: V → P+ represents placement information.P+ representsP augmented with the

special valueNONE. For placed tasksvi , Π(vi) indicates the corresponding processor.

For non-placed tasksvi , Π(vi) = NONE. For future convenience, we defineQt :: P→

P (V) to denote the current set of placed tasks mapped on eachpi ∈ P. Recall that a

placed task remains placed until migrated or until the wholeapplication terminates,

because even after task completion we will later need to retrieve (or re-retrieve in

the case of migration) its results. As before, we useκc :: V → [0..1] to capture the

proportion of a task’s computation which has been completed, and similarly,κd :: E →

[0..1] to capture the proportion of a data transfer which has been completed. A key

new concept is that of rewinding a placed taskvi which means that all the current

computations and all their inputs and outputs will be initialized, giving the impression

of rewinding the application to a previous state. To rewind ataskvi , at timet, we must

perform the following operations on theSTGdata structure.

1. ∀v j ∈ SUCC(vi) setκd(vi,v j) to 0

2. ∀vk ∈ PRED(vi) setκd(vk,vi) to 0

3. Setκc(vi) to 0

4. SetΠ(vi) to NONE

Thus, rewindingvi gives the impression of rewinding a portion of the application

to a previous state in which nothing has happened and leavingit unplaced once again.

3.6.3 The GTPSystem with Rewinding (GTP/r)

In this section we define theGTP system with rewinding (GTP/r) to preserve the

execution of a DAG application despite the failure of a particular processorpm during

the process.Qt(pm) = {v0,v1,v2, ...,vk} contains the set ofk placed tasks known at

time t to be mapped ontopm, from which we will rewind those placed tasks which are

expected to disrupt the forward execution of succeeding tasks. To do this, we must

consider each task invi ∈ Qt(pm). Intuitively, vi must be rewound if either.

54 Chapter 3. The Global Task Positioning (GTP) Models

P1

P2

P3

P4 v3

v3

v3

P1

P2

P3

P4

v2

v1 P1

P2

P3

P4

P1

P2

P3

P4 v3

Fault in Processor P3

P
la

ce
m

en
ts

t

e(v2−v3)

e(v1−v3)

e(v1−v3)

v0

e(v0−v1)

e(v2−v3)

e(v1−v3)

e(v2−v3)

v0

v2

e(v0−v2)

e(v2−v3)

Data Transfer completed

Data Transfer considered

n n+1 n+2RPs

Figure 3.10: The Rewinding Mechanism for GTP

i it has a successor task which has not yet received a completecopy of the result

of vi , or

ii it has a successorv j , which is also assigned topm and which also needs to be

rewound.

The recursive form of this rule means that we must consider tasks inQt in an or-

der which respects a reverse topological sort (according tothe precedence constraints

between tasks). Thus, withinQt(pm) we must consider exit tasks first, then their prede-

cessors, and so on. This ordering is straightforward to maintain in an implementation

because all precedence information is available. Thus, a task vi ∈ Qt(pm) must be

rewound if,

1. ∃e(vi ,v j) ∈ E : κd(vi ,v j) < 1, or

2. ∃vk ∈ SUCC(vi) : vk ∈ Qt(pm) and vk must be rewound

Note the importance of maintaining information about all placed tasks inQt , in-

cluding those whose completion is complete.

Following the procedure, we now know that no information related to the failed proces-

sorpm is maintained inGTP/r. Obviously, after the rewinding process, the failed pro-

cessor will not be considered in the subsequent scheduling decisions, unlessavailt(pm) >

0 at future RP’s.

To illustrate the rewinding mechanism, we extend the example of Figure 3.3 by adding

a failure in processorp3 before finishing the execution of the DAG application at some

3.7. The GTP/c System with Rewinding (GTP/c/r) 55

point betweenRPn+1 andRPn+2 as shown in Figure 3.10. We observe that the fail-

ure in p3 will inhibit the precedence constraint satisfaction fore(v2,v3) asv3 will stop

retrieving the input required fromv2 to start execution. Then, the failure will be de-

tected atRPn+2 and therefore the rewinding mechanism will be triggered at this point.

The rewinding mechanism must determine which placed tasks mapped top3 need to

rewind to preserve the execution of the DAG application. AtRPn+2, Qn+2(p1) = {v1},

Qn+2(p3)= {v0,v2} andQn+2(p4) = {v3}. Then, the rewinding mechanism will eval-

uate in reverse order the sequence of each placed taskvi ∈ Qn+2(p3). Thus, the first

task to evaluate isv2 which as we observe inhibits the precedence constraint satisfac-

tion for e(v2,v3), asv3 will stop retrieving input fromv2 executed onp3. Then,v2

is rewound as explained above. Now, the next task to evaluatefrom Qn+2(p3) is v0,

whichSucc(v0) = {v1,v2}, then for the first precedence constrainte(v0,v1) is satisfied

asv1 has finished its execution atp1. However, when evaluating the second precedence

constrainte(v0,v2) we observe that it is not satisfied asv2 (already rewound) will not

be able to retrieve their input fromv0 executed onp3. Thus, taskv0 must also be re-

wound. Since, tasksv0 andv2 were rewound, they will be ready to be rescheduled and

migrated to a different available processor, guaranteeingthe data transfer of the remain-

ing tasks and preserving the forward execution of the DAG application. Obviously the

processorp3 will not be considered for scheduling decisions. Followingthe steps for

the rewinding mechanism, there is no additional information linked top3 which could

lead to inconsistences in scheduling decisions. After rewinding and rescheduling the

application atRPn+2, the taskv3 was finally executed atp4 after receiving the required

inputs.

3.7 The GTP/c System with Rewinding (GTP/c/r)

In the same manner we will follow the three steps defined to integrate the rewinding

mechanism into theGTP/c system resulting in theGTP/c/r version.

3.7.1 Definition of SRPand STG

Our definition ofSRP(Shared Resource Pools) andSTG(Situated Task Graph) are

identical to those from theGTP/c system defined in Section 3.3. In particular we

rememberΩ :: E → P (P) to capture information on location of copies which can be

used as source andQt captures information on tasks placed on each processor.

56 Chapter 3. The Global Task Positioning (GTP) Models

P1

P2

P3

P4

v3

v3

v1 P1

P2

P3

P4 v3

P1

P2

P3

P4

v0

v3

P
la

ce
m

en
ts

t

e(v1−v3)

e(v2−v3)

v2

e(v2−v3)

e(v0−v1) e(v1−v3)

e(v1−v3)

e(v1−v3) e(v1−v3)

e(v2−v3)

e(v2−v3)
e(v2−v3)

n n+1 n+2

Fault in Processor P3

Data Transfer completed

Copy of Data (v1−v3)

Data Transfer considered

Copy of Data (v2−v3)

RPs

Figure 3.11: The Rewinding Mechanism for GTP/c

3.7.2 Procedure of the GTP/c/r Model

The rewinding mechanism forGTP/c/r is similar to that forGTP/r. In the same

manner, the placed tasksvi ∈ Qt(pm) are evaluated in reverse topological order. The

first criterion to select those tasks to be rewound is the sameasGTP/r, which states

that a placed taskvi mapped topm will be rewound if there exists at least a data transfer

e(vi ,v j)∈E such that it is partially transmittedκd(vi ,v j) < 1. However, now we have a

second criterion to be met related to the existence of possible reusable copies inΩ(ei , j)

for a particular edgee(vi ,v j) ∈ E, such that if there exist at least one reusable copy in

a processor different thanpm, then it means thatv j can retrieve the data from its copy

despitepm, and therefore rewinding is not needed. This particular feature ofGTP/c is

expected to reduce the overhead cost generated by the rewinding mechanism.

More formally, forGTP/c/r, a taskvi ∈ Qt(pm) must be rewound if,

1. Ω(vi) = {pm}, (this is the only copy), and either

2. ∃(vi ,v j) ∈ E : κd(vi ,v j) ≤ 1, or

3. ∃vk ∈ SUCC(vi) : vk ∈ Qt(pm) and vk must be rewound

As before, for tasks to be rewound, we must reset elements ofκd, κc and Π to

reflect the rewinding.

ForGTP/c/r, all the copies located at the failed processorpm and maintained inSTG

can lead to scheduling thrashing if they are not eliminated.Thus, and following with

3.8. Summary 57

the procedure, those copiesωt(ei, j) = pm must be eliminated fromSTG.

To illustrate the rewinding mechanism forGTP/c/r, we will use the same case as for

GTP/r with the same failure in processorp3 at some point betweenRPn+1 andRPn+2.

This is shown in Figure 3.11. AtRPn+2, Qn+2(p1) = {v1}, Qn+2(p3) = {v0,v2} and

Qn+2(p4) = {v3}. Then, the rewind mechanism will evaluate in reverse order the

sequence of each placed taskvi ∈ Qn+2(p3). Thus, the first task to evaluate isv2

which, as we observe, inhibits the precedence constraint satisfaction fore(v2,v3), asv3

will stop retrieving input fromv2 executed onp3. However, due to the maintenance of

reusable copies forGTP/c/r, the input required byv3 from v2 can be retrieved from

the copy stored atp2, satisfying the precedence constraint. Then, rewinding task v2

is not needed. The next task to be evaluated isv0 with Succ(v0) = {v1,v2}. The first

precedence constraint fore(v0,v1) is satisfied asv1 has finished execution atp1. The

next precedence constraint fore(v0,v2) is considered as satisfied asv2 kept its status of

finished task, because it was not rewound. Thus taskv0 will not be rewound. Finally,

sinceGTP/c/r maintains a collection of reusable copies some of which may be stored

at p3, we need to reset those copies stored atp3 which could lead to inconsistence in

future decisions. In this case, the copyΩl(v2,v3) stored atp3 must be deleted from the

system as it can lead to inconsistences in the scheduling decisions in the case that task

v3 be migrated in the future. Thus, after the third step, the application has been rewound

and its execution has been preserved despite failure ofp3 at RPn+2. Completing the

example, after rewinding and rescheduling the applicationat RPn+2, v3 was finally

executed atp4 after receiving the required inputs.

3.8 Summary

In this chapter we defined the proposed reactive scheduling mechanisms to address the

dynamically heterogeneous nature of SHCS. We started by defining the Global Task

Positioning (GTP) scheduling system, a list-scheduling heuristic based model, which

addresses the problem of heterogeneity and dynamism of SHCSby allowing reschedul-

ing and migration of the tasks of an executing application. Next, based on observations

of previous results forGTP, we defined the Global Task Positioning system with Copy-

ing facilities (GTP/c) which re-use information to improve the utilization of resources

and to minimize the impact of the migration cost on the application makespan. Finally,

considering that fault tolerance is an important issue in SHCS where the availability

of processors cannot be guaranteed, we defined the rewindingmechanism, which pre-

58 Chapter 3. The Global Task Positioning (GTP) Models

serves the execution of the application, despite the presence of a processor failure.

Unlike other fault tolerant approaches, our mechanism preserves the execution of the

application by recomputing and migrating those tasks whichwill disrupt the forward

execution of succeeding tasks. We showed how to integrate the rewinding mechanism

into GTPandGTP/c.

Chapter 4

The Simulation Framework

The evaluation of our reactive scheduling mechanisms is conducted by simulation,

since this allows us to generate repeatable patterns of resource performance variation.

In this chapter we describe all the elements involved in the simulation framework in

which we conducted the evaluation. We start describing the source and characteristics

of the Input Task Graphs (ITGs) used in the evaluation. Then,remembering that SHCS

is dynamic, we describe the distinguishing characteristics of our scenarios. Next, we

explain the criterion used to define the fixed rescheduling points used to reschedule the

application. The next elements that we describe are the metrics used to evaluate the

performance ofGTP, GTP/c, GTP/r andGTP/c/r. Finally, we describe the Simgrid

software used to perform the evaluation. We describe the difficulties that Simgrid

presented to manage dynamic events in simulating variations in the performance of

resources. To address this problem, we designed a tracking mechanism, built on top of

Simgrid, which allows changes in resource performance characteristics over time, as

observable in real dynamic resources.

4.1 The Directed Acyclic Graphs (DAGs)

In this section we present the Input Task Graphs (ITGs) used to evaluate our dynamic

mapping methods. In the literature, different research groups use their own methods

to determine the shape and size of the DAGs used to evaluate their mapping methods

[(Topcuoglu, 2002), (Zhao and Sakellariou, 2004b), (Shi and Dongarra, 2006)]. This

complicates the process of benchmarking the mapping methods designed by different

researchers. In [(STG, 2000)] we found the Standard Task Graph (STDGP) Project,

an effort to define a set of standard DAGs for fair evaluation of mapping algorithms.

59

60 Chapter 4. The Simulation Framework

The STDGP consists of two main sets. The first set contains a small set of four DAGs

modelled from actual application programs. For instance, in Figure 4.1(a) we see a

task graph for Newton-Euler dynamic control calculation for the 6-degrees-of-freedom

Stanford manipulator [(Kasahara and Narita, 1985)]. Figure 4.1(b) represents a task

graph for a random sparse matrix solver of an electronic circuit simulation that was

generated using a symbolic generation technique and the OSCAR FORTRAN compiler

[(Kasahara et al., 1991)].

a)Newton−Euler graph application b) Sparse−matrix graph application

Figure 4.1: DAGs for Particular Applications

The second set, which we used, contains a considerable number of task graphs (900

graphs) generated randomly. The graph size (in number of tasks) varies between 50 and

2700. The graph shapes were determined based on four different methods [(Almeida

et al., 1992), (Yang and Gerasoulis, 1994), (Adam et al., 1974a)].

Before explaining the characteristics of each method, we note that, in terms of our

formalization in Section 3.1.2, a given initial DAGITG = (V,E,data,W) can be rep-

resented in two different ways (see Figure 4.2). The first approach uses an adjacency

matrix, where theith node is represented asith row andith column, an edge fromith to

jth is represented as 1 in rowi and columnj (no edge is represented as 0). The second

approach uses adjacency lists. For DAGs (directed acyclic graphs), nodes are arranged

as lists of arrays in which each node stores the succeeding nodes in the graph.

Let A denote an adjacency matrix with elementsa(i, j), where 0≤ i, j ≤ n+ 1

denote tasks (0 is the entry dummy node andn+1 is the exit dummy node). Next we

explain the four methods used by the STDGP project to create the DAG graphs.

4.1. The Directed Acyclic Graphs (DAGs) 61

1
2
3
4

1

2 3

4

1 2 3 4

Adjacency matrix

2 3 4
4
4

Adjacency list

1 0 1 1 1
2 0 0 0 1
3 0 0 0 1
4 0 0 0 0

Figure 4.2: DAGs representation

1. The first method to determine the shape of the DAG is ’sameprob’ [(Almeida

et al., 1992)], in which the creation of an edge is determinedby independent

random values defined as follows,

P[a(i, j) = 1] = π f or 1≤ i < j ≤ N (4.1)

P[a(i, j) = 0] = 1−π f or 1≤ i < j ≤ N (4.2)

P[a(i, j) = 0] = 1 i f i ≥ j (4.3)

The parameterπ indicates the probability that there exists a direct dependency

(edge) between taski and taskj. Equation 4.1 shows that the density of prece-

dence relations between tasks is determined by the value ofπ and equation 4.3

indicates that the structure of the graph is acyclic. The value ofπ in [(Almeida

et al., 1992)] was unique, however in the STDGP project we observe that it is

considered as a range of values. Figure 4.3(a) shows a randomtask graph with

50 tasks generated by the ’sameprob’ method, whereπ was set in STDGP as

0.1 and 0.2. With thesameprobmethod, the number of precedence relations

increases as the number of tasks increases.

2. The second method to determine the shape of the DAG is the ’samepred’ method

which specifies the average number of predecessors for each task. Figure 4.3(b)

shows a random task graph with 50 tasks generated by the ’samepred’ method,

where the average number of precedence relations was specified as 3. Currently,

the average number of precedence relation is set to 1,3 or 5.

3. The third method is the ’layrprob’ method [(Yang and Gerasoulis, 1994)], which

first randomly generates the number of levels (layers) in thetask graph. Next,

62 Chapter 4. The Simulation Framework

the number of independent tasks in each level is randomly set. Finally, edges be-

tween tasks are connected randomly at different layers.Forthis particular method,

the author notes the importance that the shape of the DAGs mayhave in the eval-

uation of scheduling approaches. Thus, they consider the following statistical

information to create the DAGs,

(a) The range of independent tasks in each layer, which approximates the av-

erage degree of parallelism.

(b) The number of layers, and

(c) The average ratio of task weights over edge weights, which approximates

the graph granularity.

In keeping with the consistency of the previous methods, theSTDGP project

uses the same probabilityπ as with the ’sameprob’ method to determine a direct

dependency (edge) between tasks. Figure 4.3(c) shows a random task graph

with 50 tasks generated by the ’layrprob’ method, where the number of layers

was specified as 5 and the value ofπ was specified as 0.2. Currently, the average

number of tasks in each layer is fixed to 10, and the number of layers is calculated

as(number o f tasks)/10.

4. The last method is the ’layrpred’ method which generates levels(layers) in the

same manner as with ’layrprob’, with the mechanism to connect edges as ’samepred’.

Figure 4.3(d) shows a random task graph with 50 tasks generated by the ’layr-

pred’ method, where the number of layers was specified as 5 andthe average

number of predecessors was specified as 5. Currently, the average number of

tasks in each layer is fixed to 10, and the number of layers is calculated as

(number o f tasks)/10, with the average number of predecessors set to 1,3 or

5.

For our experiments we extracted fromSTDGPa sample of DAGs to be used as

an input into our model. We first defined the range of the size (in number of tasks) of

the DAGs to be used. The size of the DAGs is 50,100,300,500 and1000 tasks. Then,

for each size, we selected randomly (from the 900 DAGs in STDGP) up to 3 DAGs

for each of the creation methods. Thus 12 DAGs were used for each size giving a

total of 60 DAGs. The STDGP project makes a pair of assumptions which limit the

applicability of the DAGs graphs for evaluating mapping methods for SHCS. The first

4.2. Setting the Fixed Rescheduling Point 63

a) Sameprob b) Samepred c) Layrprob d) Layrpred

Figure 4.3: Random DAGs in the STDGP Project

assumption concerns the absence of communication cost among tasks, and the second

concerns the assumption that the DAGs will be evaluated in homogeneous environ-

ments. To address this, we included a module to generateW anddata information to

produce our ITGs. Remembering that our processors are heterogeneous, the task com-

putation times for a particular taskvi were created for each processor using uniformly

distributed random numbers from the interval [1 to 10]. For each size of DAG, we

generated three different graphs with different Communication to Computation Ratio

(CCR) characteristics, to test the mapping methods. The DAG’s CCR is defined as the

average of all its communication costs divided by the average of all its computation

costs. Notice that, due to the heterogeneous nature of the problem, the computation

cost of a node is approximated by the average of its costs across all processors. Thus,

for each size of the task graph, we generated three differentgraphs for CCR equal to

0.1,0.5 and 1.5.

4.2 Setting the Fixed Rescheduling Point

The setting of rescheduling points is an important element of cyclic mapping methods.

We use a fixed length rescheduling cycle. Choosing the lengthof the cycle presents

a trade-off. A long cycle will not properly react to dynamic changes. For instance it

is important to detect a failure in some of the resources as soon as possible to reduce

the impact of the failure on the makespan. Alternatively, a short cycle can increase the

number of remappings and migrated tasks lengthening the makespan. Thus, in keeping

with the principles of schedule feedback, we assume the availability of the most recent

makespan of the application, and set the fixed-period rescheduling cycle at 10% of

the value of the makespan. For new DAG applications, we use the HEFT approach

64 Chapter 4. The Simulation Framework

to obtain the initial predicted makespan. Calculating an optimal size for each cycle is

a matter for further research. We believe that new efforts tooptimize the size of the

rescheduling points may improve the makespan of the application.

4.3 The Scheduling Scenarios

In this section we describe the characteristics of the scheduling scenarios used to eval-

uate the performance of our dynamic models. We recall that, in SHCS the availability

and performance of computational resources can vary dynamically over time, even

during the course of an execution. In order to have a more realistic environment to test

our dynamic mapping methods, we included into our scenariosevents which simulate

a change in the performance of the resource (availability orbandwidth). Thus, con-

sidering the nature of our dynamic mapping methods, we created a pair of different

groups (TE1 and TE2) of scenarios. The first group (TE1) was used to evaluate the

performance of theGTPandGTP/c systems and the second group (TE2) to evaluate

GTP/r andGTP/c/r. Both TE1 and TE2 contain the same events. The key differ-

ence is that we injected in TE2 an additional event simulating a processor failure to

occur at the mid-point of the execution. Each scenario is instantiated for 5, 10 and 20

processors and assumes that processors are fully connected.

4.3.1 The Scenarios for GTPand GTP/c

For each scenario, we defined events, each simulating a resource change in either pro-

cessor or bandwidth availability. Then, we set a bound placed on the maximum vari-

ation allowed in one event, expressed as a percentage of the peak performance of a

resource. For example, in the scenario with a bound of 30%, any one event can cause

the availability of a processor to decrease to no less than 70% of its peak performance,

or of a link to decrease to no less than 70% of its maximum bandwidth. We experi-

mented with a bound ranging from 0% to 90% in increments of 10%. We will refer to

a particular scenario asSCE(x,y,z), which means that it involvesx processors,y tasks

andz percent of variability in resources. Note thatSCE(x,y,0) (no dynamic resource

variation) refers to a static environment, an approach usedby most of the mapping

methods in the literature [(Topcuoglu, 2002), (Shi and Dongarra, 2006), (Sih and Lee,

1993), (Kwok and Ahmad, 1999a)]. It allowed us to investigate the extent to which

emerging discrepancies between real and predicted behavior are handled byGTPand

4.3. The Scheduling Scenarios 65

GTP/c.

p1 p2

p3

l(p1−p2)

l(p1−p3) l(p2−p3)

a) SHCS system

P1 0.8 0.8 0.8 1.0 1.0 1.0 1.0

P2 1.0 1.0 1.0 1.0 1.0 0.9 0.9

l(p1−p2) 1.0 0.8 0.8 0.8 0.8 0.8 0.8

l(p2−p3) 1.0 1.0 1.0 0.9 0.9 0.9 0.9

c) Gantt Chart with simulating changes in resources

Rescheduling Point

Processor Availability Time

P1 0.80 0
P3 0.70 10
P1 1.00 30

P2 0.90 50

P3 1.0 0.7 0.7 0.9 0.9 0.9 0.9

l(p3−p1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

P3 0.90 30

b) Sequence of events with a bound of 70%

l(p1−p2) 0.80 10
l(p2−p3) 0.90 30

0 10 20 30 35 40 50 60 70

Link Bandwidth Time

Figure 4.4: The Scheduling Scenarios for GTPand GTP/c

To illustrate this, consider Figure 4.4 which shows a simulation scenario with a

bound of 70% as the maximum variation allowed in one event. Weobserve that each

event occurs at some point of time affecting the performanceof the resources involved

in the event. The execution time of the tasks or data transfers on the resources involved

will be affected. For instance, processorp3 decreases availability from 1 to 0.7 att = 10

and such availability remains untilt = 30 wherep3 increases availability from 0.7 to

0.9. The execution time of tasks mapped ontop3 is affected. In the same manner the

link l(p1− p2) decreases in bandwidth from 1 to 0.8 att = 10 and will remain so until

the next event involving the link. It is important to note that while our simulation tracks

resource variations as they occur (with immediate impact ontask execution time), our

scheduling algorithms only become aware of variations at rescheduling points, and

may not even notice some short-lived variations. For example, during the rescheduling

point at t = 35 the latest resource performance information will be updated within

the model (i.e., the SRP structure). We note that at the rescheduling point att = 35,

the availability for p3 is 0.9 which will be updated in GRP, but the first change at

t = 10 wherep3 varied from 1 to 0.7 was never updated in GRP, however the simulated

execution time of the task(s) being executed at that time will be correctly affected.

66 Chapter 4. The Simulation Framework

4.3.2 The Scenarios for GTP/r and GTP/c/r

To evaluate the rewinding mechanism integrated within theGTP/r andGTP/c/r sys-

tems we created a set of scenarios forming the groupTE2. Scenarios in this group

involve a similar sequence of randomly defined events asTE1, each simulating a re-

source change in either processor or bandwidth availability. The key difference is that

TE2 may contain events with availability equal to zero, simulating a processor failure

to occur at relatively the mid-point of the execution.

p1 p2

p3

l(p1−p2)

l(p1−p3) l(p2−p3)

a) SHCS system

P1 0.8 0.8 0.8 1.0 1.0 1.0 1.0

P2 1.0 1.0 1.0 1.0 1.0 0.9 0.9

l(p1−p2) 1.0 0.8 0.8 0.8 0.8 0.8 0.8

l(p2−p3) 1.0 1.0 1.0 0.9 0.9 0.9 0.9

c) Gantt Chart with simulating changes in resources

Rescheduling Point

Processor Availability Time

P1 0.80 0
P3 0.70 10
P1 1.00 30

P2 0.90 50

P3 1.0 0.7 0.7 0.9 0.9 0.0 0.0

l(p3−p1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

P3 0.90 30

P3 0.00 50

b) Sequence of events with a bound of 70%

l(p1−p2) 0.80 10
l(p2−p3) 0.90 30

Link Bandwidth Time

0 10 20 30 35 40 50 60 70

Figure 4.5: The Scheduling Scenarios for GTP/r and GTP/c/r

Figure 4.5 illustrates this case. It shows the same scenariowith a bound of 70%

as the maximum variation allowed in one event, but with an event simulating a failure

(availability equal to zero) in processorp3 at t = 50. This means that the tasks mapped

ontop3 will stop the execution att = 50 and those tasks mapped onto other processors

but still retrieving data from preceding tasks already executed atp3, will stop retrieving

data as the processor becomes unavailable. It will not be until the rescheduling point

at t = 70 that the resource performance information (GRP) will be updated within the

model and the rewinding mechanism will be triggered, after detecting this resource

failure.

4.4. Comparison Metrics 67

4.4 Comparison Metrics

In this section we describe the comparison metrics used to evaluate the performance

of our dynamic models. We first describe the metrics to evaluate theGTPandGTP/c

models and then we describe the metrics forGTP/r andGTP/c/r.

4.4.1 Comparison Metrics for GTP and GTP/c

We use theNormalized Schedule Length (NSL)[(Kwok and Ahmad, 1996)], also called

Schedule Length Ratio(SLR)[(Topcuoglu, 2002)], to compare the performance of our

reactive approachesGTP,GTP/c,DLS/sr andHEFT. The NSL metric is defined as

the ratio of the schedule length (makespan) to the sum of the computational weights

along the critical path. Note that, the critical path of a particular DAG graph is com-

puted statically. This means that, even though the reactivenature (a new task graph is

generated at each rescheduling cycle due to some tasks may have finished execution)

of some competing methods, the NSLs obtained can be directlycompared. The NSL

can be computed as

NSL=
Makespan

∑vi∈CPathWi
(4.4)

Note that the denominator in NSL takes no account of dependencies outside the

critical path. This makes it quite likely that the minimal theoretical NSL of 1 will of-

ten be impossible in practice, and that it is quite natural for NSL to grow significantly

as task graphs become large and complex. We use averaged NSL over set of DAGs as

a comparison metric. Our main interest in NSL (as opposed to absolute makespan) is

as a means of judging the relative success of competing schedulers.

To help understand the behavior of each model, we introduce three other metrics aver-

aged over all the graphs under consideration:

1. The number of remappings in which at least one placed task was migrated. This

may differ from the total number of remappings which can be determined by

dividing the makespan of the application by the fixed-size ofthe rescheduling

point.

2. The number of migrated placed tasks over time.

3. The overhead cost incurred by the mapping method defined asthe sum of the to-

tal or partial re-computation or re-transmission of data involved in the migration

68 Chapter 4. The Simulation Framework

of tasks. We note that the cost of rescheduling the application is not included.

The fact thatGTP andGTP/c allow migration of tasks, does not necessarily

mean that there will be migrated tasks, but in those cases in which we have mi-

grated tasks, they incur an overhead cost.

4.4.2 Comparison Metrics for GTP/r and GTP/c/r

In the same manner, we use the NSL metric defined in equation 4.4 to evaluate the

performance of the rewinding mechanism integrated into thereactive approachesGTP

(GTP/r) andGTP/c(GTP/c/r) models.

Little work has been conducted to design fault tolerant mechanisms for DAG ap-

plications. Thus, aiming to understand the behavior of suchmechanisms, we will use

three complementary metrics averaged over all the graphs under consideration:

1. The Rewound Tasks (RT) metric, which counts the number of placed tasks re-

wound to preserve the execution of the application.

2. The overhead cost incurred by the rewinding mechanism. Inthis part we in-

clude the amount of computation and data transfer (in units of time) which was

repeated as part of the rewinding mechanism.

3. The Rewound Levels (LR) metric, which considering that the DAG graph can be

divided into levels (layers), denotes the number of levels (how deep) the appli-

cation had to be rewound after processor failure.

Note that the rewinding mechanism is aresponsiveapproach, as it is triggered

when a processor failure is detected at some rescheduling point. It is true that, inject-

ing just one event simulating a processor failure at the mid-point of the execution may

not reflect the behaviour of a real distributed system, whereone or more processor

failures may occur at any point of time. However, we seek to maintain the consistency

in our scheduling scenarios by involving the same sequence of randomly defined (but

repeatable) events (each simulating a resource change in either processor or bandwidth

availability) used for evaluatingGTPandGTP/c. The key difference is that we now

injected an additional event simulating a processor failure to occur at the mid-point

of the execution. Additionally, we make strong emphasis in the correlation between

the rewinding mechanism and the mapping method (i.e., rewound tasks, rewound lev-

els). Thus, by considering the simple case in which only one processor failure occurs

4.5. The Simgrid Software 69

during execution, we start to explore the impact of the mapping strategies on the per-

formance of the application when a processor failure is detected at some rescheduling

point. In the literature, some research projects addressing fault tolerant mechanisms

(i.e., retry, alternate resource) focus on evaluating the fault tolerant mechanism using

standard metrics to produce failure cases at a certain arrival rate [(Hwang and Kessel-

man, 2003), (Duda, 1983), (Beguelin et al., 1997)]. Some of the standard metrics

include:

1. The Mean Time Between Failures (MTBF) measures the average amount of time

between failures.

2. Mean Time to Failure (MTTF), is the average time between adjacent arrivals of

failures.

3. Mean Time To Repair (MTTR), is the time taken to repair a failure.

4. Probability of failure on demand (POFOD), is the possibility that the system will

fail when a user requests service.

The conceptual framework within which such metrics are applicable is somewhat

different to our own. Essentially, in our scenario, in scheduling terms, the extreme

case is that a single surviving processor could re-execute the entire application from

scratch - there is no concept, for example, of tying resources or actions to specific

locations. Thus, in effect failure only occurs when the entire resource pool closes

down. From another perspective, it could be argued that our approach might be very

vulnerable to failure, depending upon the detailed mechanism used to gather resource

information. However this presents an implementation challenge independent of the

scheduling actually done with the information. We have not attempted to extend our

model to encompass these more conventional aspects of fault-tolerance.

4.5 The Simgrid Software

Our evaluation is conducted by simulation, since this allows us to generate repeat-

able patterns of resource performance variation. In this section we describe the steps

taken in our simulation to model our distinctive simulationscenarios described above,

in which resources vary their performance characteristics(availability and bandwidth)

70 Chapter 4. The Simulation Framework

over time during the execution of some particular application. For this, we use the Sim-

grid (Grid Simulator) software version 2.8, described and downloadable from [(Sim-

grid, 2001)], as a grid simulation platform. Simgrid provides a set of core abstractions

and functionalities that can be used to build simulators forspecific application domains

and/or computing environment topologies. In the literature, Simgrid has already been

widely used by different researchers [(Hernandez and Cole,2007a), (Legrand et al.,

2003), (Beaumont et al., 2002), (Beaumont et al., 2003), (Faerman et al., 2002), (Her-

nandez and Cole, 2007c)]. Simgrid assumes that resources have two performance

characteristics:latencyin time units to access the resource andservice ratewhich is

the number of work units performed per time unit. Simgrid documentation suggests a

pair of mechanisms to evaluate performance characteristics: a) as constants, in which

the initial value defining the performance characteristicsof the resource (availability or

bandwidth) remains constant during the execution, and b) astraces (dynamic events).

Traces allow us to model changes in resource performance characteristics over time,

such as the ones observable for real dynamic resources and following our notion of

simulation scenarios described above.

Early experiments, modelling resources with constant characteristics and static schedul-

ing, proved successful. However, when evaluating our dynamic models according to

the characteristics of our scenarios described in Section 4.3, in which we consider

variations in resources characteristics over time, we notethat the Simgrid mechanism

using traces did not behave according to our expectations. To address this problem, we

designed the tracking mechanism which was built on top of theSimgrid software, to

obtain the notion of more realistic dynamic scenarios, allowing to have a sequence of

events, each simulating a fluctuation in resource performance during execution.

4.6 The Tracking Mechanism

In keeping with the principles of our planned scenarios, ourtracking mechanism sup-

ports a sequence of chronological events (i.e.,evt1, evt12 , evt23 , etc.) over time, each simu-

lating a resource change in either processor or bandwidth availability. Our mechanism

works on the principle that the problem of including traces (dynamic events) during

the execution of the application, can be represented as a sequence of evaluations with

constant performance characteristics. The mechanism can be seen as a lower-level cy-

cle, iterating at each event, which we called tracking point. The mechanism manages

the notion of a virtual clock during the execution, such thatit is able to distinguish

4.6. The Tracking Mechanism 71

the time at which each event (tracking point) occurs and thenat each tracking point,

reflects the change(s) in the respective resource(s), such that the subsequent execution

of the remaining tasks will now reflect such changes, obviously affecting the execution

time of those tasks mapped onto the processors involved in the events. Thus, the track-

ing mechanism gives the impression that the application is executed in more realistic

scenarios. To achieve this, the tracking mechanism must perform the following actions

at each tracking point,

1. Update the progress of the tasks in theSTGstructure.

2. Update the current schedule with the progress of tasks.

3. Update the change in the performance inITG for each resource involved.

4. Update the virtual clock to the time at which the event occurs.

Now, after performing the above operations, the next step isto evaluate the current

updated schedule until the next planned event or until the application finishes execution

(i.e., no more events). The tracking mechanism seeks to guarantee that the sequence of

events, each simulating a resource change in either processor or bandwidth availability,

will occur at their planned time, affecting the execution time of those tasks mapped

onto the respective processor. In our context, the main difference between rescheduling

and tracking points, is that the iterations caused by the events (tracking points) do not

perform rescheduling of the application (as in rescheduling points), they just reflect

the changes in the resource characteristics such that they can be considered in the

subsequent simulation.

To illustrate the tracking mechanism, consider Figure 4.6 in which we observe a

sequence of chronological dynamic events (traces), each simulating a resource change

(i.e.,evt11 , evt22 , evt33 , etc) and indicating a tracking point . We recall that the information

about the initial performance (availability or bandwidth)is stored in theGRPstructure.

Then, as the execution starts, the resources take into account the initial performance.

We observe that the tracking mechanism must recognize the time at which every trace

(events) occurs in chronological order. Thus, following the example, the first evalua-

tion (iteration) performed by the tracking mechanism is performed fromt = 0 to evt11
at which a change in the performance ofp1 occurs, then at this tracking point, the

mechanism must reflect the change and perform the operationsdefined above so that

the subsequent execution of the remaining tasks reflects thechanges. Thus, we ob-

serve that this event occurs whenv1 is being executing onp1, then after reflecting the

72 Chapter 4. The Simulation Framework

2

3

Dynamic Events (ev)

l(p1−p2)

p1

p2

v1

v2

e(v1,v2)
1 4

5

Virtual Clock

tt1 t2 t4 t5t3

Sequence of evaluations of
the tracking mechanism.

Figure 4.6: The Tracking Mechanism

change ofp1, the remaining work ofv1 on p1 will be performed subject to the new per-

formance ofp1. The virtual clock is updated tot1. The performance ofp1 will remain

constant untilev4 which is the next event involvingp1. After evt11 , the next tracking

point occurs atevt22 involving the processorp2, thus the next evaluation is performed

from the current virtual timet1 to t2, in the same manner, the change inp2 will be re-

flected in the subsequent execution following the procedureof the mechanism. Thus,

the mechanism continues until the application finishes execution.

4.7 Summary

In this chapter we described all the components involved in the simulation framework.

The evaluation of our reactive scheduling mechanisms is conducted by simulation,

since this allows us to generate repeatable patterns of resource performance variation.

We described the source and characteristics of the Input Task Graphs (ITGs) used in

the evaluation. Next, considering the dynamic nature of SHCS, we described the dis-

tinguishing characteristics of our simulation scenarios.We explained the criterion used

to define the fixed rescheduling points used to reschedule theapplication, followed by a

description of the metrics used to evaluate the performanceof our models. Finally, we

described the extended version of the Simgrid software, which allows changes in re-

source performance characteristics over time, as observable in real dynamic resources.

Chapter 5

Experimental Results

In Chapter 3 we defined theGTP model, which allows rescheduling and migration

of tasks in response to significant variations in resource characteristics. In the same

chapter, we defined theGTP/c model, an extended version ofGTP that considers

the maintenance of a collection of reusable copies of the results of completed tasks to

improve the utilization of resources and to minimize the impact of the migration cost

on the application makespan. Finally, we defined the rewinding mechanism to pre-

serve the execution of the application despite the presenceof failure in resources. The

rewinding mechanism was integrated into theGTPandGTP/c models, resulting in the

extended versionsGTP/r andGTP/c/r respectively. In this chapter we evaluate the

performance of the models by using the metrics defined for each model in Section 4.4,

averaged over all the graphs under consideration. Our evaluation is conducted by sim-

ulation, since this allows us to generate repeatable patterns of resource performance

variation. To achieve this, we will use a collection of DAGs and a number of test sce-

narios. A scenario involves a sequence of randomly defined (but repeatable) events,

each simulating a resource change in either processor or bandwidth availability. We

used the Simgrid software [(Simgrid, 2001)], which we have adapted to support the

variability in resources, as described, in Section 4.5.

5.1 Structuring the Experimental Results

We have structured our observations based on the experimental results as shown in

Figure 5.1. We start by analyzing the behavior of the static mapping methods (i.e.,

HEFT and DLS) evaluated on our simulation scenarios. Then, we continue with the

analysis of the performance of theGTP reactive mapping method, which considers

73

74 Chapter 5. Experimental Results

the cyclic use of a mapping method over time, in response to variability in resources.

Then, we analyze the results ofGTP/c, describing the impact on makespan when it

uses reusable copies for scheduling tasks onto processors,

with Rewinding and Migration

Reliable Task Scheduling

Mapping Methods on SHCS

Copying and Migration

The Problem with Static

Factors affecting the predictions

of Static Schedules

Reactive Scheduling of DAG

applications on SHCS

Reactive Scheduling with

Rethinking DAG applications

for SHCS

Impact of the frequency of the

Makespan
Rescheduling Points in the

Figure 5.1: Structure of the experimental results obtained in our research

After this, we describe a pair of issues related to the performance of the reactive

mapping methods: The first issue concerns the length of the rescheduling cycle. The

second issue concerns the data flow mechanism among the taskscomposing the appli-

cation. Finally, we present the results of the rewinding mechanism included inGTP/r

andGTP/c/r.

We recall that in SHCS the availability and performance of computational resources

can vary dynamically over time, even during the course of an execution. Thus, in or-

der to have a more realistic simulation environment, we included into our scenarios

events, which simulate a change in the performance of the resource (availability or

bandwidth). As described in Section 4.3, our scenarios are distinguished by the bound

5.2. The Problem with Static Mapping Methods on SHCS 75

placed on the maximum variation allowed in one event, expressed as a percentage of

the peak performance of a resource. For example, in the scenario with a bound of 30%,

any one event can cause the availability of a processor to decrease to no less than 70%

of its peak performance, or of a link to decrease to no less than 70% of its maximum

bandwidth. We consider a bound ranging from 0% to 90% in increments of 10%. We

notice that scenarios with a bound of 0% are a special case in which resources remain

fully available over the execution of the application. Thisscenario is more suitable for

static mapping methods generating static schedules.

The graphics used in this section to present the results of the evaluation are distin-

guished by showing the whole spectrum of bounds for each scenario. We will refer to

a particular scenario asSCE(x,y,z), which means that the scenario usesx processors,

y tasks andzpercent of variability in computational resources.

5.2 The Problem with Static Mapping Methods on SHCS

In Section 2.6, we mentioned that when evaluating a scheduleof a particular DAG

application on SHCS, we may consider whether to use static mapping methods or to

consider reactive mapping methods such asGTP, which iteratively compute improved

schedules over time. In this section, we intend to explore the problem and to under-

stand the behavior of static mapping methods when they are executed on SHCS. We

first start by describing the performance of static mapping methods, which obtain an

initial schedule and launch the schedule onto the target system (i.e., SHCS) under the

assumption that resources are dedicated and unchanging over time. To achieve this, we

sought in the literature some computationally low-cost static mapping methods, which

were capable of addressing heterogeneous resources and producing good solutions in a

reasonable amount of time. Thus, we selected the Heterogeneous Earliest Finish Time

(HEFT) [(Topcuoglu, 2002)] and the Dynamic Level Scheduling (DLS) [(Sih and Lee,

1993)]. The HEFT algorithm might be one of the most frequently referred to listing

static mapping methods. For instance, it is evaluated in [(Wieczorek et al., 2005)] and

compared with a genetic algorithm and a myopic algorithm. The experimental results

show that HEFT outperformed the other algorithms. On the other hand, the DLS al-

gorithm is one of the earliest algorithms to consider heterogeneous processors. It is

also referred by many researchers. In [(Jarry et al., 2000)], it is evaluated and com-

pared with the Dynamic critical-path algorithm (DCP) [(Kwok and Ahmad, 1996)].

The results show that DLS outperformed DCP when the fluctuations in the variability

76 Chapter 5. Experimental Results

of resources increased considerably.

We proceed to evaluate both static mapping algorithms by using scheduling scenarios

for DAGs with CCR = 1.5 and the average of the NSLs of all the graphs under con-

sideration. We will refer to the difference between the average of the estimated NSLs,

which consider the estimated initial makespan, and the average of the real NSLs, which

consider the real final makespan, as the NSL gap.

Then, to describe the experimental results concerning static mapping methods with

static schedules on SHCS, we divide our observations in two main parts. The first

part shows the results of both HEFT and DLS forSCE(x,y,0), (0% of variability in

resources, considered as suitable for static mapping methods). The second part shows

the results forSCE(x,y,z) where 10≤ z≤ 90 describes the percentage of variation

among resources, as more realistic scenarios.

1. In Figure 5.2 we can observe the performance results for HEFT and DLS for

each scenarioSCE(x,y,0). Our first observation is that the estimated (initial)

average NSL for both is similar. In terms of the final average NSL, HEFT tends

to have a better performance than DLS, particularly in thosescenarios with 10

and 20 processors. For instance, inSCE(10,1000,0) HEFT outperforms DLS

by 11% andSCE(20,300,0) by 16%. For those scenarios with 5 processors,

DLS tends to outperform HEFT by up to 9%. In general terms HEFToutper-

forms DLS, having best performance when the number of tasks increases (500

and 1000 tasks).

Considering the NSL gap, this tends to be quite high, even given the static na-

ture of resources in this sort of scenarios. For scenarios with limited number of

resources (5 Processors), the NSL gap tends to be higher, being gradually incre-

mented as the application becomes larger and complex (500 and 1000 tasks). As

we increase the number of processors, the NSL gap decreases,however it main-

tains the gradual increase for larger DAGs. For instance, for SCE(5,1000,0) the

NSL gap for HEFT is up to 22 times the estimated average NSL andup to 23

times for DLS. If we increase the number of processors, then forSCE(10,1000,0)

the NSL gap is up to 12 times the estimated average NSL for HEFTand up to

13 times for DLS. This means that apart from the argument thatresources may

vary over time, static mapping methods producing static schedules are affected

by some factors that may negatively affect the performance of the application,

increasing the gap between the real and predicted makespan.In the next section

we describe some observations about such factors.

5.2. The Problem with Static Mapping Methods on SHCS 77

 0

 5

 10

 15

 20

 25

 30

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors, 50 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors, 100 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 10

 20

 30

 40

 50

 60

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors, 300 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors, 500 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 20

 40

 60

 80

 100

 120

 140

 160

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors, 1000 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 1

 2

 3

 4

 5

 6

 7

 8

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 2

 4

 6

 8

 10

 12

 14

 16

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 5

 10

 15

 20

 25

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 10

 20

 30

 40

 50

 60

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

78 Chapter 5. Experimental Results

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 50 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 100 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 2

 4

 6

 8

 10

 12

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 300 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 2

 4

 6

 8

 10

 12

 14

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 500 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

 0

 5

 10

 15

 20

 25

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 1000 Tasks)

Estimated HEFT
Final HEFT

Estimated DLS
Final DLS

Figure 5.2: Average NSL of the static mapping methods HEFT and DLS

2. In general terms, in more realistic scenarios which include variations in resources

ranging from 10% to 90%, we observe that HEFT tends to be better than DLS,

in most cases up to 20% with few exceptions. We can see for eachscenario in

Figure 5.2 a steady increase in the final average NSL of the application, increas-

ing the NSL gap when the variability in resources increases.This means that the

initial predictions of those DAG applications executed with static schedules are

affected over time by the dynamic nature of SHCS, affecting the performance of

the application by increasing the final average NSL of the application.

The initial predictions made by the static mapping methods with static schedules

5.3. Factors affecting the predictions of static schedules 79

are affected over time by external and internal factors. We will refer to as external

factors those factors outside the scope of the scheduling decisions but affecting the

predictions of the candidate schedule. Thus, we identify two external factors: the

variability in resources and the communication model amongtasks (PULL and PUSH

models). We found that the external factors related to the variability of resources, may

negatively affect the performance of the application by increasing the final makespan

of the application. In Section 5.7, we will show how the communication model may

affect the application performance. We will refer to as internal factors those related

with the scheduling decisions affecting the predictions reflected in the schedule to be

launched to SHCS. This was observed when the static schedules were evaluated on

scenarios with dedicated and unchanging resources over time.

5.3 Factors affecting the predictions of static sched-

ules

As we described in Section 5.2, there are internal and external factors, which may af-

fect the initial predictions of static schedules during theexecution process. We demon-

strated that the external factors, related to variations inresources, affect the initial

predictions by increasing the final makespan of the application. In this section we

enumerate some internal factors that we believe are relatedto the performance ob-

served for the application using HEFT and DLS (and probably other static approaches

in the literature), particularly when we conducted the experiments for perfect (z=0)

resources.

We argue that the internal factors are linked to the distorted notion of SHCS used by

the static methods when scheduling decisions. This means that scheduling decisions

are based on the notion of unrealistic SHCS architectures when the prediction cost is

computed, mainly to keep the simplicity of the models. We describe below some of

the unrealistic notions considered during scheduling decisions,

1. Ignoring traffic contentionby assuming an infinite bandwidth between a pair of

processors when the prediction cost is calculated. This notion of SHCS may lead

to poor estimated schedules because the predicted time to transfer data among

tasks may be shorter than the real time. This is illustrated in the example of

Figure 5.3 where we follow the steps of the HEFT algorithm. Consider the

task graph (Figure 5.3(a)), the heterogeneous information(Figure 5.3(b)) and

80 Chapter 5. Experimental Results

3

1 2

0

5 4

4 3

v2 v3

Task P1 P2 Wi,j Ru

 1 1 2 2 9

 2 1 4 3 9

 3 2 4 3 3

0 3 2 3 17

a) DAG application b) Heterogeneous Information

0 P2 0 2
1 P2 2 4
2 P1 6 7
3 P1 8 10

Task PE EST EFT

d) Initial Schedule

e) Gantt Chart

P1

P2

l(p1−p2)

l(p1−p2)

v0 v1

t0 1 2 3 4 5 6 7 8 9 10

P1 P2
1

c) SHCS architecture

Figure 5.3: Example of a distorted notion of SHCS architectures

the SHCS architecture (Figure 5.3(c)). The order in which tasks will be mapped

is based on the upward rank (Ru) showed in Figure 5.3(c) which gives the se-

quence{v0,v1,v2,v3}. Thus, Figure 5.3(d) shows the initial schedule generated

by the HEFT algorithm. We can observe in Figure 5.3(e), the Gantt Chart gen-

erated for the initial schedule in which we observe that HEFTignores traffic

contention by assuming an infinite bandwidth for thelink(p1, p2). Thus, the es-

timated makespan was computed to be 10 units of time. However, by sequencing

the data transfers onlink(p1, p2), it will actually take 12 units of time, 2 units of

time more than the estimated makespan.

2. Fully connected networksassume that there always exists a link to data trans-

fer between each pair of processors, when it can be completely different in real

SHCS environments. For our purposes, we consider in our models GTP and

GTP/c that the processors composing the target architecture are fully connected.

However, such assumption may lead to poor predictions when the real target ar-

chitecture is not fully connected. For instance, when estimating the communica-

tion cost to transfer data from a task mapped to a processorpm and a succeeding

5.4. Reactive Scheduling of DAG Applications on SHCS 81

task mapped to a different processorpn, such that there is not communication

link betweenpm andpn.

We believe that to increase the performance of the application, new efforts are re-

quired in designing static mapping methods to address the internal factors. In [(Sinnen

et al., 2006), (Sinnen and Sousa, 2005), (Agarwal et al., 2006)] it is observed that in-

cluding traffic contention into the scheduling decisions, may improve the predictions

of the generated schedules. Obviously, the inclusion of such techniques increases the

complexity of the algorithm.

The other option, which we seek to address in this work, uses reactive mapping meth-

ods such asGTP, which iteratively compute improved static schedules overtime and

are able to react to the dynamic nature of SHCS (external factors). However, the prob-

lem of the internal factors may remain if they rely on distorted notions of SHCS.

5.4 Reactive Scheduling of DAG Applications on SHCS

First, we notice that the cost prediction for theGTP model is based upon redefini-

tion of concepts drawn from the standard scheduling literature [(Kwok and Ahmad,

1999a), (Topcuoglu, 2002)], together with some additionaloperations required by the

dynamically heterogeneous nature of our target system. Hence, GTP includes the

same distorted notion of SHCS described in the previous Section 5.3 when the predic-

tion cost is calculated. In this section we evaluate the performance of theGTPmethod

on SHCS. To achieve this, we benchmarkGTPagainst a pair of algorithms described

in Chapter 2.5, the Heterogeneous Earliest Finish Time (HEFT) [(Topcuoglu, 2002)]

which considers a static schedule approach andDLS/sr, a reactive mapping method

described in Section 2.6. We recall thatDLS/sr evaluates two different metrics for the

selective rescheduling policy: the spare time and the slackof a node. For our purposes,

we selected the spare time of tasks, which denotes the maximal time that a particular

predecessor node can execute without affecting the start time of some of its dependent

nodes that are either connected by an edge in the DAG or are adjacent in the execution

order of the assigned machine. We notice thatDLS/sr includes a migration model

similar that ofGTP, in which migration of tasks may be invoked when the cost of the

migration itself is outweighed by the global time saved due to execution at the new

site. In the same manner, a pessimistic model is considered,in which the migrated task

must be restarted from the very beginning, including regathering all inputs directly

82 Chapter 5. Experimental Results

from the predecessors.

As part of the assessment, we are interested in two issues. The first issue concerns

the results of the benchmark of the mapping methods and the second concerns the ef-

fect of traffic contention on scheduling decisions involving heterogeneous resources

with changeable capabilities over time. To achieve this, wewill use three different

scheduling scenarios varying the communication to computation ratio (CCR) as 0.1,

0.5 and 1.5. The assessment of the results will be based on themetrics defined in Sec-

tion 3.2. We proceed to describe the experimental results bygrouping our observations

in two main groups. The first group benchmarks reactive mapping methods (GTPand

DLS/sr) against static mapping methods (HEFT). In this group, we will divide our

observation in two main parts. The first part relates to scenarios which assume that re-

sources are unchangingSCE(x,y,0) and the second part to scenarios withSCE(x,y,z)

where 10≤ z≤ 90 describes the percentage of variation among resources, as more

realistic scenarios. The second group describes individual results for the reactive map-

ping methods,GTP againstDLS/sr. For convenience, this also includes results for

GTP/c. We will discuss the introduction ofGTP/c in a later section.

5.4.1 Scheduling Scenario for CCR = 0.1 and infinite bandwidt h

We recall that the task computation times for a particular task vi were created for each

processor using uniformly distributed random numbers fromthe interval [1 to 10].

We start our evaluation by considering DAGs with CCR=0.1 andinfinite bandwidth.

Intuitively, the scheduling decisions must not be affectedby the traffic contention.

1. Static Mapping Methods against Reactive Mapping Methods.

• We observe in Figure 5.4 showing the average NSL, that for thecase in

which scenarios include 0% of variability,HEFT, GTPandDLS/sr present

similar performance. The experimental results do not identify a clear ten-

dency to determine the mapping method with the best performance. For

this class of scenario, we observe that discrepancies between real and pre-

dicted estimations are low.

• For more SHCS-like scenarios, we observe that the average NSL for HEFT,

tends to gradually increase as the variability increases, more thanGTPand

DLS/sr. This is observed in those scenarios with 5 and 10 processors, when

the DAGs become larger and complex (500 and 1000 tasks). Thismeans

5.4. Reactive Scheduling of DAG Applications on SHCS 83

that the variability of resources tend to affectHEFT more thanGTPand

DLS/sr (Figure 5.4). For instance, in scenarios with 80% of variability,

the average NSL for HEFT is up to 15% higher thanGTPand up to 17%

higher thanDLS/sr. The reactive strategy allowedGTP andDLS/sr to

react more efficiently to external factors such as resource variability.

2. Evaluation of Reactive Strategies

The experimental results show thatGTPpresents a similar performance toDLS/sr

in many cases. We believe that the characteristics of this scenario contribute with

more accurate predictions, as the impact of the traffic contention on the schedul-

ing decision is practically null. It is observed in Figure 5.4 thatDLS/sr outper-

forms GTP for scenarios with 5 processors, butGTP outperformsDLS/sr for

scenarios with 20 processors. Complementary information shows thatDLS/sr

required a similar number of remappings thanGTP(Figure 5.5) for DAGs with

relatively few tasks (50 and 100 tasks). However, as the number of tasks in-

creases, the number of remappings increases forDLS/sr. For instance, the ex-

perimental results forSCE(10,500,40) indicate thatDLS/sr required 5 times

more remappings thanGTPand forSCE(10,1000,40), it required 7 times more

remappings.

In general terms, for these particular scenarios, where thebandwidth is infinite, the

problem of traffic contention tend to be null. We believe thatthis contributes to the

more accurate estimations.

5.4.2 Scheduling Scenario with CCR = 0.5 and variable bandwi dth

This scenario uses the same computation times, CCR = 0.5 and changing bandwidth

over time, with the maximum bandwidth equal to one unit of data per unit of time.

Now, by increasing the communication cost, we explore the impact on scheduling

decisions when the bandwidth is finite.

1. Static Mapping Methods against Reactive Mapping Methods.

• For scenarios with 0% of variability, we observe in Figure 5.6 that in most

casesGTP tends to outperform HEFT, mainly as the number of tasks in-

creases (300,500 or 1000 tasks). For instance, inSCE(20,300,0), GTP

outperforms HEFT by 5% and forSCE(20,1000,0), GTP outperforms

84 Chapter 5. Experimental Results

 0.435

 0.44

 0.445

 0.45

 0.455

 0.46

 0.465

 0.47

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.375

 0.38

 0.385

 0.39

 0.395

 0.4

 0.405

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.205

 0.21

 0.215

 0.22

 0.225

 0.23

 0.235

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.2175

 0.218

 0.2185

 0.219

 0.2195

 0.22

 0.2205

 0.221

 0.2215

 0.222

 0.2225

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.2

 0.201

 0.202

 0.203

 0.204

 0.205

 0.206

 0.207

 0.208

 0.209

 0.21

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 0.31

 0.315

 0.32

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

5.4. Reactive Scheduling of DAG Applications on SHCS 85

 0.23

 0.235

 0.24

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.17

 0.172

 0.174

 0.176

 0.178

 0.18

 0.182

 0.184

 0.186

 0.188

 0.19

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.118

 0.12

 0.122

 0.124

 0.126

 0.128

 0.13

 0.132

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.109

 0.11

 0.111

 0.112

 0.113

 0.114

 0.115

 0.116

 0.117

 0.118

 0.119

 0.12

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.1285

 0.129

 0.1295

 0.13

 0.1305

 0.131

 0.1315

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

Figure 5.4: Average NSL for GTP, GTP/c and DLS/sr when CCR=0.1 and infinite

bandwidth

HEFT by 4%. Additionally, we observe that HEFT outperformsDLS/sr

in some cases. Considering the same scenarios, inSCE(20,300,0), HEFT

outperformsDLS/sr by 6% and forSCE(20,1000,0) by 1%.

• For more SHCS-like scenarios,GTP outperformsHEFT in most of the

cases.DLS/sr outperformsHEFT in some cases, particulary when the

variability in computational resources is greater than 20%. In Figure 5.6,

we can observe that the average NSL for HEFT, tends to gradually increase

as the variability increases, more than the reactive mapping methodsGTP

andDLS/sr. This means that the internal (traffic contention) and external

86 Chapter 5. Experimental Results

 9

 9.5

 10

 10.5

 11

 11.5

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 11

 12

 13

 14

 15

 16

 17

 18

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 12

 13

 14

 15

 16

 17

 18

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 10

 15

 20

 25

 30

 35

 40

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 10

 20

 30

 40

 50

 60

 70

 80

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

5.4. Reactive Scheduling of DAG Applications on SHCS 87

 10

 10.5

 11

 11.5

 12

 12.5

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 12

 13

 14

 15

 16

 17

 18

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 10

 15

 20

 25

 30

 35

 40

 45

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

Figure 5.5: Average Remappings for GTP, GTP/c and DLS/sr when CCR=0.1 and

infinite bandwidth

(resource variability) factors affect the initial estimations of the static ap-

proachHEFT more than the reactive approachesGTP andDLS/sr. For

instance, in scenarios with 70% of variability, the averageNSL for HEFT is

up to 0.53 times higher thanGTPand up to 0.60 higher thanDLS/sr. The

reactive strategy allowedGTPandDLS/sr to refine the initial predictions

considering the dynamic changes in resources over time intothe schedul-

ing decisions, addressing more efficiently the resource variability (external

factors). However, the strategy of rescheduling the application tends to in-

crease the overhead cost. This can be observed in Figure 5.9,which shows

88 Chapter 5. Experimental Results

the overhead cost.

2. Evaluation of Reactive Strategies

The experimental results (Figure 5.6) show that, compared with the previous

scenario where CCR=0.1 and infinite bandwidth,GTPoutperformsDLS/sr in

most cases. For instance, in Figure 5.10, we observe that forSCE(5,1000,60),

GTPoutperformedDLS/sr by an average of 9% in terms of the average NSL,

requiring an average of 10 remappings (see Figure 5.11) and an average of 700

migrated tasks (see Figure 5.12). On the other hand,DLS/sr required an av-

erage of 300 remappings and an average of 2000 migrated tasks, generating 4

times more overhead cost (recomputation and retransmitting) thanGTP (see

Figure 5.13). We believe that the performance ofDLS/sr was more affected

thanGTP in the presence of traffic contention. In the next scenario weincrease

the CCR to 1.5 and maintain the bandwidth in one unit of data per unit of time,

expecting to increase the traffic contention during execution.

We believe that, as the traffic contention increases, the discrepancies between real

and predicted estimations increase. In general terms, reactive mapping methods ad-

dressed more efficiently the internal (i.e.,traffic contention) and external (i.e.,variability)

factors , showing in most cases, a better performance than the static approach.

5.4.3 Scheduling Scenario with CCR = 1.5 and variable bandwi dth

In this scenario, we keep the same computation times and the same characteristics for

bandwidth. However, we increase the communication cost by considering CCR = 1.5.

1. Static Mapping Methods against Reactive Mapping Methods

• The case in which scenarios include 0% of variability allowsus to inves-

tigate the extent which emerging discrepancies between real and predicted

behavior are handled byGTP. We observe that as the communication

cost increases, the traffic contention increases, increasing the discrepan-

cies between the predicted and real estimations. Thus, in this scenario,

the performance of HEFT is more negatively affected than in the previ-

ous scenarios. We observe in Figure 5.10 that in most casesGTP tends

to outperform HEFT, mainly as the number of tasks increases (300,500 or

1000 tasks). For instance, inSCE(20,500,0), GTPoutperforms HEFT by

5.4. Reactive Scheduling of DAG Applications on SHCS 89

 1

 2

 3

 4

 5

 6

 7

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0

 1

 2

 3

 4

 5

 6

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0

 2

 4

 6

 8

 10

 12

 14

 16

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 5

 10

 15

 20

 25

 30

 35

 40

 45

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0

 1

 2

 3

 4

 5

 6

 7

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0

 2

 4

 6

 8

 10

 12

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

90 Chapter 5. Experimental Results

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0

 0.5

 1

 1.5

 2

 2.5

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

Figure 5.6: Average NSL for GTP, GTP/c and DLS/sr when CCR=0.5 and variable

bandwidth

9% and forSCE(20,1000,0) which increases the number of tasks,GTP

outperforms HEFT by 13%. Complementary information shows that for

SCE(20,500,0), GTP needed an average of 9 remappings (Figure 5.11)

and an average of 380 migrated tasks (Figure 5.12). In the same manner,

DLS/sr tends to outperform HEFT in most cases. The best performance

for DLS/sr is for SCE(10,1000,0), whereDLS/sr outperforms HEFT by

4%, requiring an average of 300 remappings and 1400 migratedtasks. This

means thatGTPandDLS/sr, at each RP, reacted to inaccurate estimation

(caused mainly by the internal factors) in the previous schedule and ob-

5.4. Reactive Scheduling of DAG Applications on SHCS 91

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 100 Tasks)

GTP/c
GTP

 0

 20

 40

 60

 80

 100

 120

 140

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 0

 50

 100

 150

 200

 250

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 0

 50

 100

 150

 200

 250

 300

 350

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 0

 20

 40

 60

 80

 100

 120

 140

 160

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 0

 50

 100

 150

 200

 250

 300

 350

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

92 Chapter 5. Experimental Results

 4

 5

 6

 7

 8

 9

 10

 11

 12

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 5

 10

 15

 20

 25

 30

 35

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 0

 20

 40

 60

 80

 100

 120

 140

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

Figure 5.7: Average Remappings for GTP, GTP/c and DLS/sr when CCR=0.5 and

variable bandwidth

tained a refined schedule considering the progress of the application on

unchanging environments, which increased the performanceof the appli-

cation compared withHEFT. Obviously, the decision to migrate a placed

task will incur migration cost because retransmission of data is needed.

• For more SHCS-like scenarios,GTP and DLS/sr outperformHEFT in

most of the cases. In Figure 5.10, we can observe that for all the scenarios,

the average NSL for HEFT, tends to increase considerably compared with

the previous scenarios. This tendency is gradually incremented more than

GTP and DLS/sr, as the variability increases. Thus, in scenarios with

5.4. Reactive Scheduling of DAG Applications on SHCS 93

 15

 20

 25

 30

 35

 40

 45

 50

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 20

 40

 60

 80

 100

 120

 140

 160

 180

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 200

 400

 600

 800

 1000

 1200

 1400

 1600

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 0

 500

 1000

 1500

 2000

 2500

 3000

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

 5

 10

 15

 20

 25

 30

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 100

 200

 300

 400

 500

 600

 700

 800

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

94 Chapter 5. Experimental Results

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 10

 15

 20

 25

 30

 35

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 100

 150

 200

 250

 300

 350

 400

 450

 500

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

Figure 5.8: Average Migrated Tasks for GTP, GTP/c and DLS/sr when CCR=0.5 and

variable bandwidth

90% of variability, the NSL for HEFT is up to 2.3 times higher thanGTP

and up to 2.6 times higher thanDLS/sr. The reactive strategy allowed

GTPandDLS/sr to react more efficiently to resource variability (external

factors) and traffic contention (internal factors). However, the pessimistic

model used, in which the migrated task must be restarted fromthe very

beginning, including regathering all inputs directly fromthe predecessors,

tends to increase the overhead cost, lengthening the makespan.

2. Evaluation of Reactive Strategies

The experimental results show thatGTPoutperformsDLS/sr in most cases. We

5.4. Reactive Scheduling of DAG Applications on SHCS 95

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

 100

 150

 200

 250

 300

 350

 400

 450

 500

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

96 Chapter 5. Experimental Results

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 100

 200

 300

 400

 500

 600

 700

 800

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 0

 2000

 4000

 6000

 8000

 10000

 12000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 5000

 10000

 15000

 20000

 25000

 30000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

Figure 5.9: Average Overhead Cost for GTP, GTP/c and DLS/sr when CCR=0.5 and

variable bandwidth

can see in Figure 5.10, that those cases in whichDLS/sr outperformsGTP in

terms of the average NSL, mainly involve scenarios with a lowvariability in re-

sources and DAGs applications with relatively few tasks (50and 100 tasks). For

instance,SCE(5,100,10) shows that the average NSL for DLS/sr is up to 7%

less than the average NSL forGTP. By observing the experimental results ob-

tained in the scheduling scenarios, we observe thatGTPoutperformsDLS/sr in

most cases. We believe that there are two main contributing factors: a) The first

factor concerns the prediction of the spare time of tasks, which may be affected

by the external and internal factors described previously.For instance, ignoring

5.4. Reactive Scheduling of DAG Applications on SHCS 97

traffic contention in the prediction of the spare time of tasks. This can be seen

in the first scheduling scenario where the traffic contentionwas practically null.

In this scenario we observed that the performance ofGTPandDLS/sr was sim-

ilar. However, as the communication cost was gradually increased in the next

scheduling scenarios,GTPoutperformedDLS/sr in most cases. b) The second

factor concerns the criterion to apply the selective rescheduling policy consid-

ered in our benchmark, which dictates that the spare time of tasks are evaluated

when a task finishes execution. Thus, the combination of bothfactors will di-

rectly affect the performance ofDLS/sr, which will affect the accuracy of the

spare time of tasks. As a consequence, the number of rescheduling points will in-

crease, leading to more migrated tasks, leading to a higher overhead which may

affect the final makespan of the application. We can observe this, in this sce-

nario, when the DAGs become larger and complex (300, 500 and 1000 tasks).

For instance, in Figure 5.10, we observe that forSCE(20,1000,40) GTP out-

performedDLS/sr by an average of 13%, requiring an average of 9 remappings

(see Figure 5.11) and an average of 620 migrated tasks (see Figure 5.12). On

the other hand,DLS/sr required an average of 60 remappings and an average of

1400 migrated tasks generating 60% more overhead cost (recomputation and re-

transmitting) thanGTP (see Figure 5.13). Another important issue that we will

explore in the Section 5.6, is related to the frequency of therescheduling points

(RP’s), which may affect the final makespan. Intuitively, many RP’s will in-

crease the overhead cost of the application, but very few RP’s will allow internal

and external factors to negatively impact the makespan.

In general terms, the reactive mapping methods tend to have abetter performance

than those considering static schedules, in the presence oftraffic contention and re-

source variability. We observe that reactive approaches allow the application to react

to both variability in resources and inaccurate estimations from previous schedules.

This means that, in some cases, reactive approaches may havea better performance

than static approaches even in environments with dedicatedand unchanging resources.

This is mainly observed when the number of tasks and data transfers is increased.

We note that the assignment policy used inGTP, which allows a task to be mapped

onto that processor offering the minimum earliest finish time, may contribute to the

relatively high number of migrated tasks, as it allows migration of tasks even if the

predicted time saved is small. We believe that by improving the assignment policy, the

number of migrated tasks may reduce, thus increasing the application performance.

98 Chapter 5. Experimental Results

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 1

 2

 3

 4

 5

 6

 7

 8

 9

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 1

 2

 3

 4

 5

 6

 7

 8

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 2

 4

 6

 8

 10

 12

 14

 16

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

5.5. Reactive Scheduling with Copying and Migration 99

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 50 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 100 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 1

 2

 3

 4

 5

 6

 7

 8

 9

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 300 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 500 Tasks)

HEFT
GTP/c

GTP
DLS/sr

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

HEFT
GTP/c

GTP
DLS/sr

Figure 5.10: Average NSL for GTP, GTP/c and DLS/sr when CCR=1.5 and variable

bandwidth

5.5 Reactive Scheduling with Copying and Migration

In this section we show and evaluate the performance resultsfor the GTP/c system,

an extended version of theGTPsystem. WithGTP/c we observed that in an execu-

tion with relatively frequent migration, it may be that, over time, the results of some

task have been copied to several other nodes, and so a subsequent migrated task may

have several possible sources for each of its inputs. Some ofthese copies may now be

more quickly accessible than the original, due to dynamic variations in communica-

tion capabilities. Thus, we first discuss the monitoring of data flow among tasks within

100 Chapter 5. Experimental Results

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 5

 10

 15

 20

 25

 30

 35

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 0

 20

 40

 60

 80

 100

 120

 140

 160

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 0

 50

 100

 150

 200

 250

 300

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 7

 8

 9

 10

 11

 12

 13

 14

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

 80

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 0

 50

 100

 150

 200

 250

 300

 350

 400

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

5.5. Reactive Scheduling with Copying and Migration 101

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 5

 10

 15

 20

 25

 30

 35

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

 80

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 0

 20

 40

 60

 80

 100

 120

 140

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

Figure 5.11: Average Remappings for GTP, GTP/c and DLS/sr when CCR=1.5 and

variable bandwidth

the context ofGTPandGTP/c. The information monitored embraces the following

variables: TheTotal Data Transfers, |ek(i, j)| : ek ∈ E shows the average of the total

number of expected data transfers for each DAG application considered in our exper-

iments. TheData Transfers Used|ek(i, j)| : ek ∈ E andκd(vi ,v j) = 1 describes the

average of the numbers of data transfers which used bandwidth capabilities to perform

the data transfer. Obviously, if we subtract theData Transfers Usedfrom the To-

tal Data Transferswe will obtain the average of theIntra-processors Data Transfers,

for which the communication cost is considered negligible.The Copies Generated

|Ωk(e(vi ,v j)) : Ωk ∈ Ω| represents the average number of copies generated during ex-

102 Chapter 5. Experimental Results

 20

 30

 40

 50

 60

 70

 80

 90

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 200

 300

 400

 500

 600

 700

 800

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 400

 600

 800

 1000

 1200

 1400

 1600

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 500

 1000

 1500

 2000

 2500

 3000

 3500

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 60

 80

 100

 120

 140

 160

 180

 200

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 100

 200

 300

 400

 500

 600

 700

 800

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

5.5. Reactive Scheduling with Copying and Migration 103

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

Figure 5.12: Average Migrated Tasks for GTP, GTP/c and DLS/sr when CCR=1.5

and variable bandwidth

ecution as a consequence of the migration policy defined forGTP. We recall that a

particular edge may have several copies. TheCopies Useddescribes the average of

the copies that were used directly as an input for a particular e(i, j). We notice that

thoseCopies Usedwhich used bandwidth capabilities are included in the set ofData

Transfers Used.

To conduct our experiments, we will use the characteristicsof the second scenario,

for which CCR = 0.5 and changing bandwidth over time, with themaximum bandwidth

equal to one unit of data per unit of time. In Figure 5.14 we observe that a number of

copies were generated during execution as a result of the migration policy defined for

104 Chapter 5. Experimental Results

 600

 700

 800

 900

 1000

 1100

 1200

 1300

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 34000

 36000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(5 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

 1200

 1400

 1600

 1800

 2000

 2200

 2400

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(10 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

5.5. Reactive Scheduling with Copying and Migration 105

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 50 Tasks)

GTP/c
GTP

DLS/sr

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 100 Tasks)

GTP/c
GTP

DLS/sr

 14000

 16000

 18000

 20000

 22000

 24000

 26000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 300 Tasks)

GTP/c
GTP

DLS/sr

 25000

 30000

 35000

 40000

 45000

 50000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 500 Tasks)

GTP/c
GTP

DLS/sr

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP

DLS/sr

Figure 5.13: Average Overhead Cost for GTP, GTP/c and DLS/sr when CCR=1.5

and variable bandwidth

GTP. For instance, the average number of copies generated forSCE(5,300,30) is

317, representing 7% of the average of theTotal Data Transfers, and an average of

38 copies were used as direct input for some particular tasks, representing 12% of the

number of the copies generated. Our experimental results show that in general terms,

the average number of copies generated ranged from 5% to 20% of the average of the

total data transfers and the average number of copies used ranged from 10% to 19% of

the average number of copies generated. The minimum values mainly correspond to

those applications with few tasks (50,100), increasing in range as the number of tasks

increases (300,500,1000). Despite the low percentage in the number of copies used as

106 Chapter 5. Experimental Results

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(5 Processors, 50 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 100

 200

 300

 400

 500

 600

 700

 800

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(5 Processors, 100 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(5 Processors, 300 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(5 Processors, 500 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(5 Processors, 1000 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 100

 200

 300

 400

 500

 600

 700

 800

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

5.5. Reactive Scheduling with Copying and Migration 107

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(20 Processors, 50 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 100

 200

 300

 400

 500

 600

 700

 800

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(20 Processors, 100 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(20 Processors, 300 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(20 Processors, 500 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

9080706050403020100

D
at

a
T

ra
ns

fe
rs

 M
on

ito
rin

g

% of Variability in Resources

SCE(20 Processors, 1000 Tasks)

Total Data Transfers
Data Transfers Used

Copies Generated
Copies Used

Figure 5.14: Average Data Transfers Monitoring

a direct input, this produces a significant improvement in the performance of the ap-

plication. This can be seen in Figure 5.10, where we can see that GTP/c outperforms

HEFT,GTP andDLS/sr in most cases. Exceptions are limited to the use of DAGs

with few tasks (mainly 50 and 100 tasks) and low variability in resources.GTP/c has

a better performance particularly when the application becomes larger and complex.

This is because, the number of copies will tend to increase, and the migrated tasks will

have several possible sources to retrieve the information.Thus, some reusable copies

will reduce the impact of migration on makespan by avoiding unnecessary data trans-

fer between tasks, and by exploiting the network link which offers the minimum data

transfer cost according to the latest performance resourceinformation. For instance,

108 Chapter 5. Experimental Results

in SCE(10,1000,30), the average NSL forGTP/c outperforms HEFT by up to 16%,

GTP by up to 6% and DLS by up to 9%. For this scenario, we have an average of

38749 expected data transfers, 28748 of the data transfers were used to transmit data

between a pair of tasks mapped on different processors, 5757copies were generated

and 940 of the copies were used as a direct input, representing 16% of the copies gen-

erated. Furthermore, we observe that in some cases, the average NLS forGTP/c is

better thanGTP, however the number of migrated tasks tends to be higher forGTP/c

than forGTP. We believe that this is because at some point of the execution, where

a particularly high number of copies has been generated, thecost of migrating a task

is cheaper forGTP/c tending to increase the number of migrated tasks but not neces-

sarily the overhead cost. This can be seen inSCE(10,300,20) where the average NSL

for GTP/c is better thatGTPby up to 3%. However, the number of migrated tasks for

GTP/c is 4% higher thanGTP, but the overhead cost is 3% less thanGTP.

In general terms, the cyclic use of a mapping method can generate reusable copies

which can be used as direct input for some succeeding tasks. The reusable copies can

reduce the impact of the overhead cost on makespan by avoiding unnecessary data

transfer between tasks, and exploiting more effectively the network links. Obviously,

the benefit of reusable copies can not be exploited in static schedules.

5.6 Impact of the frequency of the Rescheduling Points

in the Makespan

Our reactive mapping methodsGTPandGTP/c, address the dynamic nature of SHCS

by allowing rescheduling of an executing application in response to significant varia-

tions in resource characteristics. As we described in Section 4.2, to perform our ex-

periments, we set a fixed-period rescheduling cycle at 10% ofthe value of the initial

makespan, for the whole spectrum of bounds for each scenario. In this section we

intend to explore the impact on makespan when the number of rescheduling points

is varied. Intuitively, many RP’s will increase the overhead cost of the application,

but very few RP’s will allow internal and external factors tonegatively impact the

makespan. To achieve this, we use the reactive mapping method GTP on the third

scheduling scenario, which uses DAGs with CCR=1.5 and changing bandwidth over

time, with the maximum bandwidth equal to one unit of data perunit of time. We eval-

uateGTPconsidering different lengths for the rescheduling point.Thus, we consider

5.6. Impact of the frequency of the Rescheduling Points in the Makespan 109

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors,50 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors,100 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 5

 10

 15

 20

 25

 30

 35

 40

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors,300 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 10

 20

 30

 40

 50

 60

 70

 80

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors,500 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 0

 20

 40

 60

 80

 100

 120

 140

 160

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(5 Processors,1000 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors,50 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors,100 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 2.5

 3

 3.5

 4

 4.5

 5

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors,300 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors,500 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 6

 8

 10

 12

 14

 16

 18

 20

 22

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors,1000 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

110 Chapter 5. Experimental Results

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 50 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 100 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 300 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 500 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

Figure 5.15: Average NSL for the GTP/r and GTP/c/r System

fixed-period rescheduling cycles at 1%, 3%, 10% and 30% of thevalue of the initial

makespan.

Our experimental results show that, following our strategyof setting a fixed-period

rescheduling cycle for the whole spectrum of bounds for eachscenario, it is not pos-

sible to distinguish a clear tendency to determine a fixed value for the rescheduling

cycle. Instead, we observe that, the decision of setting thevalue of the length of the

rescheduling point, may be linked to the variability of resources. We observe this in

the three-dimensional graph in Figure 5.19, which shows forGTP, the average NSL

for SCE(x,300,0) andSCE(x,1000,0) when the resource variability is equal to zero.

5.6. Impact of the frequency of the Rescheduling Points in the Makespan 111

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(5 Processors, 50 Tasks)

Max.Level
GTP/c/r

GTP/r

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(5 Processors, 100 Tasks)

Max.Level
GTP/c/r

GTP/r

 34

 35

 36

 37

 38

 39

 40

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(5 Processors, 300 Tasks)

Max.Level
GTP/c/r

GTP/r

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(5 Processors, 500 Tasks)

Max.Level
GTP/c/r

GTP/r

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(5 Processors, 1000 Tasks)

Max.Level
GTP/c/r

GTP/r

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

Max.Level
GTP/c/r

GTP/r

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

Max.Level
GTP/c/r

GTP/r

 28

 30

 32

 34

 36

 38

 40

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

Max.Level
GTP/c/r

GTP/r

 30

 32

 34

 36

 38

 40

 42

 44

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

Max.Level
GTP/c/r

GTP/r

 88

 90

 92

 94

 96

 98

 100

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

Max.Level
GTP/c/r

GTP/r

112 Chapter 5. Experimental Results

 5

 6

 7

 8

 9

 10

 11

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(20 Processors, 50 Tasks)

Max.Level
GTP/c/r

GTP/r

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(20 Processors, 100 Tasks)

Max.Level
GTP/c/r

GTP/r

 26

 28

 30

 32

 34

 36

 38

 40

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(20 Processors, 300 Tasks)

Max.Level
GTP/c/r

GTP/r

 28

 30

 32

 34

 36

 38

 40

 42

 44

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(20 Processors, 500 Tasks)

Max.Level
GTP/c/r

GTP/r

 86

 88

 90

 92

 94

 96

 98

 100

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Resources

SCE(20 Processors, 1000 Tasks)

Max.Level
GTP/c/r

GTP/r

Figure 5.16: Average Levels Rewound for the GTP/r and GTP/c/r System

The x-axis corresponds to the different rescheduling points at 1%, 3%, 10% and 30%

of the value of the initial makespan. The y-axis correspondsto the average NSL of

the application and the z-axis corresponds to the number of processors (5,10 and 20

processors). Thus, we observe that as the number of rescheduling points increases

(1%), the average NSL increases. For instance forSCE(5,1000,0), the average NSL

when the rescheduling cycle is 1% is equal to 19.91, when 3% isequal to 18.28, when

10% is equal to 18.57 and when 30% is equal to 18.39. This couldmean that many

short cycles may be inadequate when the fluctuations in the variability of resources are

minimum. Many short cycles may increase the number of migrated tasks, therefore

lengthening the makespan.

5.6. Impact of the frequency of the Rescheduling Points in the Makespan 113

 7.1

 7.2

 7.3

 7.4

 7.5

 7.6

 7.7

 7.8

 7.9

 8

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(5 Processors, 50 Tasks)

GTP/c/r
GTP/r

 11

 12

 13

 14

 15

 16

 17

 18

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(5 Processors, 100 Tasks)

GTP/c/r
GTP/r

 39

 40

 41

 42

 43

 44

 45

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(5 Processors, 300 Tasks)

GTP/c/r
GTP/r

 50

 52

 54

 56

 58

 60

 62

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(5 Processors, 500 Tasks)

GTP/c/r
GTP/r

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(5 Processors, 1000 Tasks)

GTP/c/r
GTP/r

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

GTP/c/r
GTP/r

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

GTP/c/r
GTP/r

 21

 21.5

 22

 22.5

 23

 23.5

 24

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

GTP/c/r
GTP/r

 34

 36

 38

 40

 42

 44

 46

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

GTP/c/r
GTP/r

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

GTP/c/r
GTP/r

114 Chapter 5. Experimental Results

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(20 Processors, 50 Tasks)

GTP/c/r
GTP/r

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(20 Processors, 100 Tasks)

GTP/c/r
GTP/r

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(20 Processors, 300 Tasks)

GTP/c/r
GTP/r

 23

 23.5

 24

 24.5

 25

 25.5

 26

 26.5

 27

 27.5

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(20 Processors, 500 Tasks)

GTP/c/r
GTP/r

 46

 46.5

 47

 47.5

 48

 48.5

 49

908070605040302010

A
ve

ra
ge

 T
as

ks
 R

ew
ou

nd

% of Variability in Resources

SCE(20 Processors, 1000 Tasks)

GTP/c/r
GTP/r

Figure 5.17: Average Tasks Rewound for the GTP/r and GTP/c/r

On the other hand, in the three-dimensional graph in Figure 5.20, it is shown for

GTP, the average NSL forSCE(5,300,z) and SCE(20,1000,z) when the resource

variability is high (70≤ z≤ 90). The x-axis corresponds to the different rescheduling

points at 1%, 3%, 10% and 30% of the value of the makespan. The y-axis corresponds

to the average NSL of the application and the z-axis corresponds to the resource vari-

ability ranging from 70% to 90%. In this scenario, we observethat as the number of

rescheduling points increases (1%), the average NSL tends to decrease compared with

the other rescheduling points. For instance forSCE(20,100,70), the average NSL

when the rescheduling cycle is 1% is equal to 3.07, when 3% is equal to 4.55, when

10% is equal to 3.03 and when 30% is equal to 3.30. It could meanthat many short cy-

5.6. Impact of the frequency of the Rescheduling Points in the Makespan 115

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(5 Processors, 50 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(5 Processors, 100 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 1000

 2000

 3000

 4000

 5000

 6000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(5 Processors, 300 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(5 Processors, 500 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(5 Processors, 1000 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 500

 1000

 1500

 2000

 2500

 3000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 2000

 4000

 6000

 8000

 10000

 12000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

116 Chapter 5. Experimental Results

 0

 500

 1000

 1500

 2000

 2500

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(20 Processors, 50 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(20 Processors, 100 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 5000

 10000

 15000

 20000

 25000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(20 Processors, 300 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(20 Processors, 500 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(20 Processors, 1000 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

Figure 5.18: Average Overhead Cost for for the GTP/r and GTP/c/r

30

10
31

90

80

70

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

Average NSL

Remapping Points at (1%,3%,10% and 30%) for 5PEs and 1000 Tasks

"5-1000-CP-high.dat" using 1:2:3

% of Makespan

% Variability in Resources

Average NSL

30

10
31

90

80

70

 3

 4

 5

 6

 7

 8

 9

 10

 11

Average NSL

Remapping Points at (1%,3%,10% and 30%) for 20 PEs and 1000 Tasks

"20-1000-CP-high.dat" using 1:2:3

% of Makespan

% Variability in Resources

Average NSL

Figure 5.19: Average NSL for Scenarios with minimum variability

5.7. Rethinking DAG Applications for SHCS 117

cles may be required to react more efficiently to resource variability. Few long cycles

may not properly react to dynamic changes.

30

10
31

20

10

5

 1

 2

 3

 4

 5

 6

 7

 8

Average NSL

Remapping Points at (1%,3%,10% and 30%) for 300 Tasks at ESC0

"300-CP-Esc0.dat" using 1:2:3

% of Makespan

Number of Processors

Average NSL

30

10
31

20

10

5

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Average NSL

Remapping Points at (1%,3%,10% and 30%) for 5,10 and 20 PEs at ESC0

"1000-CP-Esc0.dat" using 1:2:3

% of Makespan

Number of Processors

Average NSL

Figure 5.20: Average NSL for Scenarios with high variability

In general terms, the setting of rescheduling points is an important element of re-

active mapping methods based on the cyclic use of a mapping method. Considering

our experimental results, we believe that the strategy usedin our experiments to eval-

uate the performance of the reactive mapping methods, whichconsider a fixed-period

rescheduling cycle for the whole spectrum of bounds for eachscenario, may not be

adequate for extreme cases. New efforts are required to optimize the frequency of the

rescheduling cycles. We believe that the observed variability of resources can be a

parameter to determine the frequency of the rescheduling cycle.

5.7 Rethinking DAG Applications for SHCS

In previous literature, the relationship between the DAG application (defined by the

owner of the DAG) and the scheduling mechanism (defined by theowner of the method)

is not fully explored. Most mapping methods focus on scheduling strategies which use

the shape and static information of the DAG. They do not consider the mechanism

through which communication of task results is actually achieved. We have found that

ignoring this issue may negatively affect the performance of the application. To ex-

plain this, we will use a hypothetical case shown in the Figure 5.21. Figure 5.21(a)

describes a portion of some particular DAG application and Figure 5.21(b) shows the

schedule generated by the HEFT algorithm for the tasks shownin the partial DAG.

In such schedules we assume that the tasks are ordered according to the task ranks.

In keeping with the consistency of our formal definitions, wewill use EST(vi, p j)

118 Chapter 5. Experimental Results

andEFT(vi , p j) to denote the estimated earliest start time and earliest finish time of

taskvi on processorp j respectively. In the same manner, we will useRST(vi , p j) and

RFT(vi , p j) to denote the real start time and real finish time of taskvi on processorp j

respectively. In terms of the communication model among tasks, we observe two main

models to allow the transfer of data among tasks, thePUSHandPULL models.

Tasks

t0 P1
t1 P1
t4 P2
t3 P3
t2 P2

t5 P3
t6 P2

a) DAG application

a

b
c d

e f

g

b) Schedule

Processort1t0

t2 t3 t4 t5 t6

tn

tn P3

Figure 5.21: DAG application

1. The PUSH model, in which as soon as a task finishes execution, it pushes the data

result to its successors to be executed. For instance, by using the HEFT schedule

from Figure 5.21, the computation of the estimated start time for taskt4 mapped

on p2 is given by,EST(t4, p2) = max(EFT(t0, p1)+C(t0, p1, t4, p2),EFT(t1, p1)+

C(t1, p1, t4, p2)). However, the real start time fort4 on p2 when using the PUSH

model is,RST(t4, p2) = max(RFT(t0, p1) +C(t0, p1, t4, p2) +C(t0, p1, t2, p2) +

C(t0, p1, t6, p2),RFT(t1, p1) +C(t1, p1, t4, p2)). This means that in order to be

executed,t4 must wait untilt1 pushes the data to those successors mapped in the

same processor andt2 pushes the remaining data needed byt4 for execution.

2. The PULL model, in which as soon as a task is mapped on a particular pro-

cessor, it requests to pull the data needed from its predecessors. By using

the same example, now the computation of the estimated starttime for taskt4

is given by ,EST(t4, p2) = max(EFT(t0, p1) +C(t0, p1, t4, p2),EFT(t1, p1) +

C(t1, p1, t4, p2)), and the real start time using the PULL model is,RST(t4, p2) =

max(RFT(t0, p1) +C(t0, p1, t4, p2),RFT(t1, p1) +C(t1, p1, t4, p2). This means

that for this model,t4 will wait less time to be executed as it receives its inputs

just after its predecessorst0 andt1 finish execution.

5.7. Rethinking DAG Applications for SHCS 119

Thus, the communication model among tasks is another external factor which may

impact the makespan of the application. We believe that the design of DAG applica-

tions must be reconsidered when they are executed on dynamicenvironments such as

SHCS. The notion behind this statement is that we observed that for our DAGs , the

nature of PULL models increases the performance of the application. We enumerate

below some of the ways in which PULL models may enhance the performance of the

application,

1. Data storage time refers to the waiting time that the data remains stored at some

particular processor before being used by some task. Data with long waiting

times on resources may become unavailable in case of processor failure or may

affect the predictions of tasks, increasing the number of migrated tasks. We

observe that the data storage time tends to be less for PULL models than PUSH

models. This can be observed in Figure 5.21 where, for the PUSH model, the

data transfer for the edge(t0, tn) is sent whent0 finishes execution, even iftn

executes much later.

2. Pulling data may allow data transfers to arrive at the source relatively close in

time such that the data storage time will tend to be short, this is important be-

cause it may help to decrease the number of migrated tasks dueto the dynamic

nature of resources. When pushing data, the arrival of data at the source will be

more dispersed in time, as a consequence the data storage time could be longer

and the number of retransmissions may increase.

3. Long data storage time will require a major amount of physical storage. We

notice that neitherGTP nor GTP/c make any attempt to optimize the physi-

cal data storage. Complementary work can be found in [(Ramakrishnan et al.,

2007)], which considers physical data-storage constraints when scheduling data

intensive applications.

In this context, we believe that for some DAGs, communication models based on

the PULL model are more suitable for SHCS than the PUSH model.We observe that

the PULL model requires data to be stored for less time than the PUSH model. To

support our statement, we designed some experiments to understand the impact of

using the PUSH or PULL model with both dynamic and static mapping approaches.

We note that the experiments using the PULL model are the sameexperiments used

120 Chapter 5. Experimental Results

to evaluate the performance ofGTPandGTP/c. We present the experimental results

below.

5.7.1 Evaluating the PUSH and PULL Models for Static Mapping

Methods

In this section we evaluate the PUSH and PULL models for static mapping approaches.

To conduct our experiments, we will use the characteristicsof the second scenario, for

which CCR = 0.5 and changing bandwidth over time, with the maximum bandwidth

equal to one unit of data per unit of time. We use the HEFT static mapping method,

evaluated in our scenarios by using a version with the PUSH model and another version

with the PULL model. In Figure 5.22 we present the results for10 processors. The

performance of the PULL model in most cases tends to be betterthan the PUSH model,

particularly for DAGs with 500 and 1000 tasks. For instance,in SCE(10,500,40),

HEFT with the PULL model is up to 4.8% better than HEFT with thePUSH model

and inSCE(10,1000,30) the performance increases up to 5.5%.

5.7.2 Evaluating the PUSH and PULL Model for Reactive Mappin g

Methods

In this section we evaluate the PUSH and PULL models for the reactive scheduling

mechanismsGTP, GTP/c andDLS/sr and present the results of the evaluation using

our scenarios with 10 processors. We observe that the impactof using PUSH or PULL

models in reactive scheduling approaches tends to be more significant.

The DLS/sr approach is the most affected by the mapping methods evaluated. For

instance we observe in Figure 5.23 that forSCE(10,1000,10), the average NSL when

using the PUSH model is up to 8 times higher than when using thePULL model. We

believe that the nature of the PUSH model combined with the internal and external

factors described in Section 5.3 will tend to negatively affect the predictions of the

spare time of tasks. This can be observed in Figure 5.24, where we observe that for the

sameSCE(10,1000,10) the number of remappings increases up to 3 times, increasing

by up to 5 times the number of migrated tasks (see Figure 5.25)and finally increasing

the overhead cost up to 7 times (see Figure 5.26). These values tend to gradually

increase as the variability increases.

TheGTPmodel with PULL outperformsGTPwith PUSH. For the same scenario

5.7. Rethinking DAG Applications for SHCS 121

 1

 2

 3

 4

 5

 6

 7

 8

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

HEFT with PULL
HEFT with PUSH

 2

 3

 4

 5

 6

 7

 8

 9

9080706050403020100
A

ve
ra

ge
 N

S
L

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

HEFT with PULL
HEFT with PUSH

 2

 4

 6

 8

 10

 12

 14

 16

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

HEFT with PULL
HEFT with PUSH

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

HEFT with PULL
HEFT with PUSH

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

HEFT with PULL
HEFT with PUSH

Figure 5.22: Comparison of HEFT with PUSH and PULL Models

122 Chapter 5. Experimental Results

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 5

 10

 15

 20

 25

 30

 35

 40

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 50

 100

 150

 200

 250

 300

9080706050403020100

A
ve

ra
ge

 N
S

L

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

Figure 5.23: Comparison of average NSL for reactive methods with PUSH and PULL

models

5.7. Rethinking DAG Applications for SHCS 123

SCE(10,1000,10), we observe in Figure 5.23 that the average NSL is up to 6.5 times

higher forGTPwith PUSH. In Figure 5.24 it is observed thatGTPwith PULL requires

up to 6 times less remappings thanGTP with PUSH. Consequently, the number of

migrating tasks decreases up to 7 times and the overhead costis up to 9 times shorter

thanGTPwith PUSH.

 4

 6

 8

 10

 12

 14

 16

 18

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 6

 8

 10

 12

 14

 16

 18

 20

 22

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 10

 20

 30

 40

 50

 60

 70

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 50

 100

 150

 200

 250

 300

9080706050403020100

A
ve

ra
ge

 R
em

ap
pi

ng
s

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

Figure 5.24: Comparison of average remappings for reactive methods with PUSH and

PULL Models

GTP/c is the dynamic mapping method least affected in our evaluation. The copy-

ing facilities which allowsGTP/c to reuse copies of the results of some tasks help to

decrease the impact of the inaccurate predictions caused bythe PUSH model. Follow-

ing with the same scenarioSCE(10,1000,10) the NSL forGTP/c with PUSH is twice

124 Chapter 5. Experimental Results

 20

 30

 40

 50

 60

 70

 80

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 60

 80

 100

 120

 140

 160

 180

 200

 220

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 5000

 10000

 15000

 20000

 25000

9080706050403020100

A
ve

ra
ge

 M
ig

ra
te

d
T

as
ks

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

Figure 5.25: Comparison of average migrated tasks for reactive methods with PUSH

and PULL Models

5.7. Rethinking DAG Applications for SHCS 125

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 50 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 100 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 10000

 20000

 30000

 40000

 50000

 60000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 300 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 500 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

9080706050403020100

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Resources

SCE(10 Processors, 1000 Tasks)

Pull GTP/c
Push GTP/c

Pull GTP
Push GTP

Pull DLS/sr
Push DLS/sr

Figure 5.26: Comparison of average overhead cost for reactive methods with PUSH

and PULL models

126 Chapter 5. Experimental Results

that ofGTP/c with PULL. The number of remappings required when using the PUSH

models is up to twice that for the PULL model. In the same manner the number of

migrated tasks is doubled and the overhead cost 2.5 times higher for the PUSH model.

In general terms, the problem of the communication model among tasks is highly de-

pendent upon the shape and the size of the DAG applications. We showed that for

the DAGs used in this experiments, the PULL models presentedbetter performance

than the PUSH models. The evaluation of our reactive mechanismsGTP, GTP/c and

DLS/sr was carried out considering the PULL model. We note that new heuristic

techniques are needed to exploit the nature of PULL models, for instance scheduling

techniques based on the backward scheduling approach.

5.8 Reliable Task Scheduling with Rewinding and Mi-

gration

In this section we evaluate the performance of theGTP/r andGTP/c/r systems which

include the Rewinding Mechanism. To achieve this, we will use the characteristics of

the second scenario, for which CCR = 0.5 and changing bandwidth over time, with the

maximum bandwidth equal to one unit of data per unit of time. We injected randomly

(but repeatably) into our scenarios failures which will seta particular processor as un-

available at the mid-point of the execution. Thus, when the failure is detected at the

next rescheduling point (RP), the rewinding mechanism willbe triggered to allow the

application to complete despite the unavailable processor. Failures will be added to

the same scenarios used to benchmark theGTPandGTP/c, so that we will be able to

compare for each model the amount of extra time required by the application to finish

execution when a failure occurs. This can be determined by the difference between

the makespan obtained for the application with failure and the makespan obtained for

application without failure, which is the same that of Section 5.4 and Section 5.5 for

GTPandGTP/c respectively. It is important to remember that these makespans are

for different circumstances, sinceGTPandGTP/c might simply fail to terminate in

the presence of failure. In order to gain a better understanding in this area, we monitor

a set of complementary metrics, defined in Section 3.5, whichwe believe are related

to the performance of the application. These complementarymetrics are the levels re-

wound (LR), the placed tasks rewound (PTR) and the rewindingoverhead cost (ROO).

Our experimental results show that the rewinding mechanismfor theGTP/c/r system

5.9. Summary 127

outperforms theGTP/r system in most cases. This can be observed in the graphics

of Figure 5.15 where the average NSL forGTP/c/r tend to be less thanGTP/r for

all the scenarios. This means that in the presence of a failure, an application using

GTP/c/r will require less extra time to finish execution than usingGTP/r. To ex-

plain this, we will use the complementary metrics. We observe in Figure 5.15 that for

SCE(10,500,30) the average NSL forGTP/c/r is up to 11% better thanGTP/r. Now,

from the complementary metrics, we observe in Figure 5.16 thatGTP/r will need up to

5.8% more levels rewound thanGTP/c/r, and the number of tasks to be recomputed

is up to 8% more thanGTP/c/r (see Figure 5.17), generating 3% more rewinding

overhead (see Figure 5.18). From this we learn that there exists a linear chain of events

which links the number of levels rewound, the number of rewound tasks, the rewind-

ing overhead cost and finally the real makespan of the application. When processors

fail,the strategy of using reusable copies in theGTP/c/r model, may help some re-

maining tasks still retrieving data from the failed processor, to retrieve data from other

sites. Thus, these tasks will not be rewound, reducing the impact of the linear chain of

events on makespan.

In general terms our experimental results showed that the rewinding mechanism helps

to preserve the execution of the application despite the presence of failure in particular

processors. The performance of the rewinding mechanism fora particular scheduling

system is highly dependent upon the details of the scheduling strategies used. We have

shown that the strategy of maintaining reusable copies may help to reduce the impact

of the failed processor on makespan. Obviously, mapping methods, which are not able

to preserve the execution of the application in the presenceof a faulty processor, will

need to restart the execution of the application from the very beginning.

5.9 Summary

In this chapter we have presented the simulation results of our experiments, which

included the use of DAGs with different shapes and sizes, SHCS architectures with

different number of processors and a number of test scenarios involving a sequence of

events, each simulating a resource change in either processor or bandwidth availability.

We started by presenting the results of the evaluation of thestatic mapping methods

HEFT andDLS. Then we presented the results for theGTP, GTP/c andDLS/sr

models. We noted that setting the frequency of the rescheduling points is an important

element of cyclic mapping methods. Next, we showed that the consideration of using

128 Chapter 5. Experimental Results

PUSH or PULL models for data transfer in SHCS may affect the performance of the

application. Finally we presented the results ofGTP/r andGTP/c/r which include

the rewinding mechanism.

Chapter 6

Conclusions

In this chapter we present the conclusions of our research work. We start by presenting

a summary of the results obtained in our experiments. Next, we suggest future work

related to the rewinding mechanism as a scheduling strategyto map DAG applications

onto heterogeneous and dynamic distributed computing systems. Finally, we express

some final thoughts.

6.1 Summary of Results

This research work explored the problem of mapping parallelapplications onto het-

erogeneous and dynamic distributed computing systems. Thecore issues are that the

availability and performance of resources, which are already by their nature heteroge-

neous, can be expected to vary dynamically, even during the course of an execution.

Thus, we presented in Section 3.2, theGTP system with the premise of addressing

the dynamic nature of SHCS by allowing rescheduling and migration of tasks of an

executing application in response to significant variations in resource characteristics.

However, we found that our modelGTPapart from reacting to the dynamic nature of

SHCS, reacted to inaccurate predictions from previous schedules, mainly caused by

the internal factors discussed in Section 5.3. This was shown in Section 5.4 when we

evaluatedGTPagainst theHEFT algorithm in those scenarios with 0% of variability

in resources.GTPproved to be competitive compared with other reactive scheduling

mechanisms. This was shown in Section 5.4 when we evaluatedGTP in more realistic

SHCS scenarios and compared the performance ofGTPagainst theDLS/sr approach.

For reactive scheduling approaches allowing reschedulingand migration of tasks, a

cost must be paid which is reflected in the overhead cost and directly related with the

129

130 Chapter 6. Conclusions

number of migrated tasks. In this case, we observed thatDLS/sr tends to generate a

higher number of migrated tasks thanGTP, which in the end will negatively impact the

final makespan. This is mainly because of the combination of two factors: a) The first

factor is related to the prediction of the spare time of tasks, which may be affected by

the external and internal factors described previously. b)The second factor is related

to the criterion to apply the selective rescheduling policy, which dictates that the spare

time of tasks are evaluated when a task finishes execution. Thus, as the task graphs

become larger and complex (500 and 1000 tasks), the combination of these factors

may increase the number of rescheduling points, increasingthe number of migrated

tasks which will affect the final makespan. Concerning the size of the rescheduling

points, we found that the strategy used in our experiments toevaluate the performance

of the reactive mapping methods, which consider a fixed-period rescheduling cycle for

the whole spectrum of bounds for each scenario, may not be adequate for some of the

bounds. New efforts are required to optimize the size of the rescheduling cycles. We

believe that the observed variability of resources can be a parameter to determine the

length of the rescheduling cycle.

We showed in Section 5.5 that models allowing scheduling andmigration of tasks may

generate copies, which can be reused in subsequent scheduling decisions as a direct

input for tasks which have migrated during the process. Based on this observation, we

designed an extended version ofGTPcalledGTP/c. We showed in Section 5.5 that

using a small fraction of the total copies generated may improve the makespan of the

application. This is because such copies avoid unnecessarydata transfer between tasks

and exploit the network link which offers the minimum data transfer cost according to

the latest performance resource information. However, we believe that further efforts

can be made to increase the number of copies used or to decrease them. Whatever the

case, reusing data represents a viable approach to enhance the cyclic use of mapping

methods.

Fault tolerance is an important issue in SHCS as the availability of resources cannot

be guaranteed. Scheduling methods not considering this issue will have to restart the

application from the very beginning in the presence of a processor failure. The rewind-

ing mechanism described in 3.5 seeks to preserve the execution of DAG applications,

despite the presence of a processor failure. We showed in Section 5.8 that the perfor-

mance of the rewinding mechanism in a particular method is highly dependent upon

the details of the scheduling strategies used, encompassing issues such as task assign-

ments, data transfers, migration of tasks, data replication and so on. Thus, another

6.2. Future Work 131

benefit of reuse copies is that it allows a better performanceof the rewinding mecha-

nism. This is because, as we showed in Section 5.8 there exists a linear chain of events

linking the levels rewound with the number of rewound tasks,which determines the

overhead cost of rewinding the application. Then, the reuseof copies allowsGTP/c to

have fewer rewound levels thanGTP, being reflected in the number of tasks rewound

and in the overhead cost.

6.2 Future Work

In our research we used the rewinding mechanism in the context of fault tolerance. It

is also interesting to ask if there exists any other area in task scheduling in which the

rewinding mechanism could be used effectively. We believe that the rewinding mech-

anism could be used as a scheduling strategy focused on minimizing the makespan

of the application. For instance, most of the DAG schedulersin the literature tend

to obtain a schedule of unfinished tasks, usually with the objective of minimizing the

makespan. However, there could be some cases in which rewinding the DAG (recom-

putation of finished tasks) could derive a better makespan. To illustrate this, we will

use the example of Figure 6.1 which shows the task graph, the SHCS architecture, the

static information and the initial schedule obtained by HEFT.

P1 P2
1

P3

1 1

Task P1 P2 P3

 1 1 3 3

 2 1 4 3

 3 2 4 3

0 3 2 4

a) DAG application b) Heterogeneous Information

0 P2 0 2
1 P2 2 5

3 P1 7 9

Task PE EST EFT

d) Initial Schedule

3

1 2

0

4 4

1 3

c) SHCS architecture

2 P1 6 7

Figure 6.1: Example (t=0) for reactive scheduling with rewinding

132 Chapter 6. Conclusions

Thus, following our approach, and assuming a rescheduling point at t=2, Figure 6.2

shows the information updated for both the progress of tasksand the performance of

resources. Att = 2, taskv0 has finished execution and we observe a drastic decrease

in the availability for P2 from 1 to 0.40. Following the costing of candidate schedules,

in which tasks are assigned to that processor which offers the minimum Earliest Finish

Time, Figure 6.2(c) shows the Gantt chart of the new schedulegenerated byGTP, in

which v1 is migrated fromp2 to p1, such that the new estimated makespan is equal to

10.

v1

v2

v3

 Resource Bandwidth Avail (%)

a) GRP structure at t = 2

 p2 − 40

 L(p1−p2) 1 −

 L(p2−p3) 1 −
 L(p1−p3) 1 −

 p1 − 100

 p3 − 100

P1 P2 P3

2

4

5

6

7

8

9

10

1

0

3

v0

v1

v2

v3

** RP = 2

P1 P2 P3

2

4

5

6

7

8

9

10

1

0

3

** RP = 2

c) Gantt Chart after rescheduling at t=2 d) Gantt Chart after rescheduling and rewinding v0

v0

 Task/Comm. PE weight advance(%)

 V0 2 2 100

 Comm. link weight advance

b) STG structure at t = 2

Figure 6.2: Example (t=2) for reactive scheduling with rewinding

However, if att = 2 we first rewind the taskv0 and then apply the costing of can-

didate schedules forGTP, we will obtain the schedule showed in Figure 6.2(d), in

which we observe thatv0 is recomputed atp1. This action allows us to save 10%

in the makespan compared with the previous example ofGTP. Thus, the rewinding

mechanism can be productively used as a part of scheduling strategy.

6.3. Final Thoughts 133

6.3 Final Thoughts

In this research, we place strong emphasis in four key aspects, which we believe are

central when designing scheduling mechanisms to map DAG applications on SHCS:

reactivity, data-aware scheduling, data transfer flow and reliability. The first aspect

allowed us to explore reactive scheduling mechanisms in response to significant vari-

ations in resource characteristics. The strategy of migrating tasks allowed us to ef-

ficiently address the dynamic nature of SHCS. Since we believe that new classes of

complex DAG applications will emerge to exploit the vast number of resources of-

fered by SHCS, the second aspect was focused on understanding the behavior of the

DAG application when it is executed in a reactive environment. Thus, we observed that

reuse of data was possible and useful to reduce the impact of migration on makespan by

avoiding unnecessary data transfer between tasks, exploiting the network links more

efficiently. The third aspect concerns the relationship between the DAG application

(defined by the owner of the DAG) and the mapping method (defined by the owner of

the method). Thus, we identified two main models to allow the transfer of data among

tasks, thePUSHandPULL models. We explored the impact of using either thePUSH

or PULL model on makespan. We found that, ignoring this issue may negatively affect

the performance of the application. Finally, the fourth aspect concerns the reliability

of the reactive scheduling mechanisms, as some resources can fail during execution.

Thus, we proposed a rewinding mechanism to preserve the execution of the application

despite the presence of a processor failure.

Bibliography

Abawajy, J. (2004). Fault-tolerant scheduling policy for grid computing systems.Sym-

posium on Parallel and Distributed Processing, pages 238–244.

Abraham, A., Buyya, R., and Nath, B. (2000). Nature’s heuristics for scheduling jobs

on computational grids.IEEE Conference on Advanced Computing and Commu-

nications (ADCOM’2000), pages 45–52.

Adam, T., Chandy, K., and Dickson, J. (1974a). A comparison of list schedules for

tasks using static scheduling on oscar.Communications of the ACM, 17(12):685–

690.

Adam, T., Chandy, K., and Dickson, J. (1974b). A comparison of list scheduling for

parallel processing systems.Communications of the ACM, 17(12):685–690.

Agarwal, T., Sharma, A., and Kale, L. (2006). Topology-aware task mapping for

reducing communication contention on large parallel machines. IEEE/IPDPS,

page 10 pp.

Ahmad, I. and Kowk, Y. (1998). On exploiting task duplication in parallel program

scheduling. IEEE Transactions on Parallel and Distributed Systems, 9(9):533–

544.

Almeida, V., Vasconcelos, I., and Menasce, D. (1992). Usingrandom tasks graphs to

investigate the potential benefits of heterogeneity in parallel systems.In Proceed-

ings of the 1992 ACM/IEEE conference on Supercomputing, pages 683–691.

Amstrong, R., Hensgen, D., and Kidd, T. (1998). The relativeperformance of various

mapping algorithms is independent of sizable variances in run-time predictions.

IEEE Heterogeneous Computing Workshop(HCW’98), pages 79–87.

Arora, M., Das, S., and Biswas, R. (2002). A de-centralized scheduling and load

balancing algorithm for heterogeneous grid environments.In Proceedings of the

135

136 Bibliography

2002 IEEE International Conference on Parallel ProcessingWorkshops, pages

499–505.

Bansal, S., Kumar, P., and Singh, K. (2003). An improved duplication strategy

for scheduling precedence constrained graphs in multiprocessor systems.IEEE

Transactions on Parallel and Distributed Systems, 14(6):533–544.

Beaumont, O., Carter, L., Ferrante, J., Legrand, A., and Robert, Y. (2002). Bandwidth-

centric allocation of independent tasks on heterogeneous platforms. IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS’02), 67:62–72.

Beaumont, O., Legrand, A., Marchal, L., and Robert, Y. (2005). Independent and

divisible tasks scheduling on heterogeneous star-shaped platforms with limited

memory. Proceedings of the Conference on Parallel,Distributed andNetwork-

Based Processing(Euromicro-PDP’05), pages 179–186.

Beaumont, O., Legrand, A., and Robert, Y. (2003). Optimal algorithms for scheduling

divisible workloads on heterogeneous systems.IEEE International Parallel and

Distributed Processing Symposium (IPDPS’03), page 14 pp.

Beguelin, A., Seligman, E., and Stephan, P. (1997). Application level fault toler-

ance in heterogeneous networks of workstations.Journal of Parallel and Dis-

tributed Computing on Workstation Clusters and Networked-based Computing,

43(2):147–155.

Bell, W., Cameron, D., Capozza, L., Millar, A., Zini, F., andStockinger, K. (2003a).

Optorsim: a grid simulator for studying dynamic data replication strategies.The

International Journal of High Performance Computing Applications, 7(4).

Bell, W., Cameron, D., Carvajal, R., Millar, P., Stockinger, K., and Zini, F. (2003b).

Evaluation of an economy-based replication strategy for a data grid.International

Workshop on Agent Based Cluster and Grid Computing, pages 661–668.

Bokhari, S. (1981). On the mapping problem.Transactions on Computers, 30(3):207–

214.

Braun, T., Siegel, H., and Beck, N. (1998). A taxonomy for describing matching

and scheduling heuristics for mixed-machine heterogeneous computing systems.

Symposium on Reliable Distributed Systems, pages 330–335.

Bibliography 137

Braun, T., Siegel, H., Beck, N., and Freund, R. (2001). A comparision of eleven static

heuristics for mapping a class of independent tasks onto heterogeneous distributed

computing systems.Journal of Parallel and Distributed Computing, 61:810–837.

Buyya, R., Murshed, M., Abramson, D., and Venugopal, S. (2005). Scheduling param-

eter sweep applications on global grids:a deadline and budget constrained cost-

time optimization algorithm.Software-Practice and Experience, 35:491–512.

Cao, J., Jarvis, S., Saini, S., and Nudd, G. (2003). Gridflow:workflow management

for grid computing.In Proceedings of the 3rd IEEE International Symposium on

Cluster Computing and the Grid(CCGrid’03), 2:198–205.

Casavant, T. and Kuhl, J. (1988). A taxonomy of scheduling ingeneral-purpose

distributed computing systems.IEEE Transactions on Software Engineering,

14(2):141–153.

Chung, Y. and Ranka, S. (1992). Application and performanceanalysis of a compile-

time optimization approach for list scheduling algorithmson distributed-memory

multiprocessors.Proceedings of Supercomputing, pages 512–521.

Coffman, E. and Graham, R. (1972). Optimal scheduling for two-processor systems.

Acta Informatica, 1:200–213.

Condor (2001). High throughput computing system.http://www.cs.wisc.edu/condor.

DAGman (2002). High throughput computing system.

http://www.cs.wisc.edu/condor/dagman.

Deelman, E., Blythe, J., Kesselman, C., and Livni, M. (2004). Pegasus:mapping sci-

entific workflows onto the grid.LNCS, Grid Computing, 3165:11–20.

Deelman, E., Kesselman, C., Blythe, J., and Gil, Y. (2003). Mapping abstract complex

workflows onto grid environments.Journal of Grid Computing, 1:25–39.

Duda, A. (1983). The effects of checkpointing on program execution time.Information

Processing Letters, 16:221–229.

Dumitrescu, C. and Foster, I. (2005). Gangsim: A simulator for grid scheduling stud-

ies. In Proceedings of the IEEE International Sysmposium on Cluster Computing

and the Grid (CCGrid’05).

138 Bibliography

Ercegovac, M. (1998). Heterogeneity in supercomputing architectures.Parallel Com-

puting, 7:367–372.

Eshaghian, M. (1993). A cluster-m based mapping methodology. IEEE Parallel Pro-

cessing Symposium, pages 213–221.

Eshaghian, M. and Shaaban, M. (1994). Cluster-M parallel programming paradigm.

International Journal of High Speed Computing (IJHSC), 6(2):287–311.

Eshaghian, M. and Wu, Y. (1997). Mapping heterogeneous taskgraphs onto hetero-

geneous system graphs.IEEE Heterogeneous Computing Workshop (HCW’97),

pages 147–160.

Faerman, M., Birnbaum, A., Casanova, H., and Berman, F. (2002). Resource alloca-

tion for steerable parallel parameter searches.In Proceedings of the Third LNCS

International Workshop on Grid Computing, 2536:157–168.

Foster, I., Czajkowski, K., and Tuecke, S. (2003a). Open grid services infrastructure

(v.1). http://www.globus.org/toolkit/draftggfogsi-gridservice3320030627.pdf.

Foster, I. and Kesselman, C. (1997). Globus: A metacomputing infrastructure toolkit.

International Journal of Supercomputer Applications, 11(2):115–128.

Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002). Grid services for distributed

system integration.IEEE Computer, 35(6):37–46.

Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2003b).The physiology of the

grid: An open grid service architecture for distributed systems integration.at

http://www.globus.org/alliance/publications/papers/ogsa.pdf.

Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of the grid: Enabling

scalable virtual organizations.International Journal on Supercomputer Applica-

tions, 15(3):200–222.

Freund, R., Gherrity, M., and Siegel, H. (1998). Schedulingresources in multi-

user,heterogeneous,computing environments with smartnet. Heterogeneous Com-

puting Workshop, pages 184–199.

Gary, M. and Johnson, D. (1979). Computers and intractability:a guide to the theory

of np-completeness.W.H.Freeman & Co.

Bibliography 139

Gasperoni, F. and Schwiegelshohn, U. (1992). Scheduling loops on parallel proces-

sors:a simple algorithm with close to optimum performance.LNCS Parallel Pro-

cessing:CONPAR’92, 634:625–636.

Gerasoulis, A. and Yang, T. (1992). A comparison of clustering heuristics for schedul-

ing directed acyclic graphs on multiprocessors.Journal of Parallel and Dis-

tributed Computing, 16(4):276–291.

Gerasoulis, A. and Yang, T. (1993). On the granularity and clustering of directed

acyclic task graphs.IEEE Transactions on Parallel and Distributed Systems,

4(6):686–701.

Girkar, M. and Polychronopoulos, C. (1987). Partitioning programs for parallel exe-

cution. ACM Computer Science, pages 216–229.

Graham, R. (1969). Bound on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics, 17(2):416–429.

GridSim (2002). The gridsim project homepage.http://www.gridbus.org/gridsim/.

GridWay (2002). Metascheduling technologies for the grid.http://www.gridway.org/.

Hernandez, I. and Cole, M. (2007a). Reactive grid scheduling of dag applications.In

Proceedings of the 25th IASTED(PDCN), Acta Press:92–97.

Hernandez, I. and Cole, M. (2007b). Reliable dag schedulingwith rewinding and

migration. to appear in First International Conference on Networks forGrid

Applications (GridNets07), ACM Press.

Hernandez, I. and Cole, M. (2007c). Scheduling dags on gridswith copying and mi-

gration. to appear in Parallel Processing and Applied Mathematics (PPAM07),

Springer LNCS.

Hu, T. (1961). Parallel sequencing and assembly line problems.Operations Research,

9(6):841–848.

Huedo, E., Montero, R., and Llorente, I. (2004). Experiences on adaptive grid schedul-

ing of parameter sweep applications.Proceedings of the 19th IEEE Euromicro-

PDP’04, pages 263–275.

140 Bibliography

Hui, C. and Chanson, S. (1997). Allocating task interactiongraphs to processors in

heterogeneous networks.IEEE Transactions on Parallel and Distributed Systems,

8(9):908–926.

Hwang, S. and Kesselman, C. (2003). Grid workflow: A flexible failure handling

framework for the grid. International Symposium on High Performance Dis-

tributed Computing(HPDC’03), page 126.

Ibarra, O. and Kim, C. (1977). Heuristic algorithms for scheduling independent tasks

on non-identical processors.Journal of the ACM, 24(2):280–289.

In, J., Avery, P., and Ranka, S. (2005). Sphinx: A fault-tolerant system for scheduling

in dynamic grid environments.In Proceedings of the 19th IEEE IPDPS’05, pages

12–22.

Jalote, P. (1994). Fault tolerance in distributed systems.Prentice Hall.

Jarry, A., Casanova, H., and Berman, F. (2000). Dagsim: A simulator for dag schedul-

ing algorithms.Ecole Normale Superieure de Lyon, Research Report No. 2000-

46.

Kasahara, H., Honda, H., and Narita, S. (1991). A multi-grain parallelizing compi-

lation scheme for oscar.In Proceedings of the 4th Workshop on Languages and

Compilers for Parallel Computing, 589:283–297.

Kasahara, H. and Narita, S. (1985). Parallel processing of robot-arm control computa-

tion on a multiprocessor system.IEEE Robotics and Automation, RA-1(2):104–

113.

Kim, S. and Browne, J. (1988). A general approach to mapping of parallel computation

upon multiprocessor architectures.Proceedings of International Conference of

Parallel Processing, 2:1–8.

Kruatrachue, B. and Lewis, T. (1988). Grain size determination for parallel processing.

IEEE Software, pages 23–32.

Kwok, Y. and Ahmad, I. (1997). A parallel algorithm for compile-time scheduling of

parallel programs on multiprocessors.Proceedings of the Conference on Parallel

Architectures and Compilation Techniques(PACT’97), pages 90–101.

Bibliography 141

Kwok, Y. and Ahmad, I. (1999a). Static algorithms for allocating directed task graphs

to multiprocessors.ACM Computing Surveys, 31(4):406–471.

Kwok, Y.-K. and Ahmad, I. (1996). Dynamic critical path scheduling: An effective

technique for allocating task graphs to multiprocessors.IEEE Transactions on

Parallel and Distributed Systems, 7(5):506–521.

Kwok, Y.-K. and Ahmad, I. (1999b). Benchmarking the task graph scheduling algo-

rithms. Journal of Parallel and Distributed Processing, 59(3):381–422.

Leangsuksun, C. and Potter, J. (1993). Problem representation for an automatic map-

ping algorithm on heterogeneous processing environments.In Proceedings of the

IEEE Workshop on Heterogeneous Processing (WHP’93), pages 48–53.

Legrand, A., Marchal, L., and Casanova, H. (2003). Scheduling distributed applica-

tions: the simgrid simulation framework.In Proceedings of the 3rd IEEE In-

ternational Symposium in Cluster Computing and the Grid (CCGrid’03), pages

138–145.

Lima, H., Hara, T., Ichimi, N., and N.Sannomiya (1999). Autonomous decentralized

scheduling algorithm for a job-shop scheduling problem with complicated con-

straints.Proceedings of the The Fourth International Symposium on Autonomous

Decentralized Systems, pages 366–369.

Maheswaran, M., Ali, S., and Siegel, H. (1999). Dynamic mapping of a class of

independent tasks onto heterogeneous computing systems.Journal of Parallel

and Distributed Computing, 59(2):107–131.

Maheswaran, M. and Siegel, H. (1998). A dynamic matching andscheduling algorithm

for heterogeneous systems.In Proceedings of the 7th Heterogeneous Computing

Workshop(HCW’98), pages 57–69.

Massie, M., Chun, B., and Cuellar, D. (2004). The ganglia distributed monitoring:

Design, implementation and experience.Journal of Parallel Computing, 30(7).

McCreary, C., Khan, A., and Thompson, J. (1994). A comparison of heuristics for

scheduling dags on multiprocessors.Proceedings of the Parallel Processing Sym-

posium, pages 446–451.

MDS (2000). Monitoring and discovery system.http://globus.org/mds.

142 Bibliography

Medeiros, R., Cirne, W., Brasileiro, F., and Sauve, J. (2003). Faults in grids: Why are

they so bad and what can be done about it?In Proceeding of the International

Workshop on Grid Computing, pages 18–24.

Nath, B. (1997). A hybrid gs-sa algorithm for flowshop scheduling problems. Pro-

ceedins of the International Conference on Computer Integrated Manufacturing

(ICCIM’97), pages 462–471.

NWS (2002). The network weather service.http://nws.cs.ucsb.edu.

Pam, M. (1988). Software pipelining:an effective scheduling technique for vliw ma-

chines.In Proceedings of the SIGPLAN’88, pages 318–328.

Papadimitriou, C. and Steiglitz, K. (1998). Combinatorialoptimization: Algorithms

and complexity.Dover Publications, INC.

Papadimitriou, C. and Yannakakis, M. (1979). Scheduling interval-order tasks.SIAM

Journal of Computation, 8(3):405–409.

Papadimitriou, C. and Yannakanis, M. (1990). Towards an architecture-independent

analysis of parallel algorithms.Journal of Computation, 19(2):322–328.

Pegasus (2003). Planning for execution in grids.http://pegasus.isi.edu/.

Project, T. E. D. (2004). The european datagrid project.http://www.edg.org.

Ramakrishnan, A., Singh, G., Zhao, H., Sakellariou, R., Deelman, E., Vahi, K., Black-

burn, K., Meyers, D., and Samidi, M. (2007). Scheduling data-intensive work-

flows onto storage-constrained distributed resources.Symposium on Cluster Com-

puting and the Grid (CCGrid’07), pages 401–409.

Ranganathan, K. and Foster, I. (2004). Computation and datascheduling for large-

scale distributed computing.Proceedings of the 19th IEEE Euromicro-PDP’04,

pages 263–275.

Sait, S. and Youssef, H. (1999). Iterative computer algorithms with applications in

engineering.IEEE Computer Society.

Sarkar, V. (1989). Partioning and scheduling parallel programs for multiprocessors.

MIT Press,Cambridge, MA.

Bibliography 143

Schopf, J. (2004). Ten actions when grid scheduling: the user as a grid scheduler.

Grid resource management: state of the art and future trends, Kluwer Academinc

Publishers,Norwell,MA, pages 15–23.

Senger, H., Silva, F., and Nascimento, W. (2006). Hierarchical scheduling of indepen-

dent tasks with shared files.In Proceedings of the International Symposium on

Cluster Computing and the Grid(CCGrid’06), 2:16–19.

Shi, Z. and Dongarra, J. (2006). Scheduling workflows applications on processors with

different capabilities.Future Generation Computer Systems (FGCS), 22(6):665–

675.

Sih, G. and Lee, E. (1993). A compile-time scheduling heuristic for interconnection-

constrained heterogenous processor architectures.IEEE Transactions on Parallel

and Distributed Systems, 4(2):175–187.

Simgrid (2001). The simgrid project homepage.http://simgrid.gforge.inria.fr/.

Sinnen, O. and Sousa, A. (2005). Communication contention in task scheduling.IEEE

Transactions on Parallel and Distributed Systems, 16(6):503–515.

Sinnen, O., Sousa, A., and Sandnes, F. (2006). Toward a realistic task scheduling

model. IEEE Transactions on Parallel and Distributed Systems, 17(3):263–275.

Song, H., Liu, X., Jacobsen, R., Bhagwan, R., Zhang, X., Taura, K., and Chien, A.

(2000). The microgrid: A scientific tool for modeling computational grids.Pro-

ceedings of IEEE Supercomputing.

Spooner, D., Jarvis, S., Cao, J., and Nudd, G. (2003). Local grid scheduling tech-

niques using performance predictions.IEEE Proceedings of Computers and Dig-

ital Techniques, 150(2):87–96.

Spooner, D., Jarvis, S., Cao, J., and Nudd, G. (2005). Dynamic scheduling of scientific

workflow applications on the grid:a case study.ACM Symposium on Applied

Computing, pages 687–694.

STG (2000). The standard task graph project.http://www.cs.wisc.edu/condor/dagman.

Takefusa, A., Matsuoka, H., Nakada, K., Aida, K., and Nagashima, U. (1999).

Overview of a performance evaluation system for global computing scheduling

144 Bibliography

algorithms. In Proceedings of the 8th IEEE International Symposium on High

Performance Distributed Computing (HPDC8), pages 97–104.

Taverna (2004). Taverna user manual.http://taverna.sourceforge.net/manual/docs.work.html.

Thanalapati, T. and Dandamudi, S. (2001). An efficient adaptive scheduling scheme

for distributed memory multicomputers.IEEE Transactions on Parallel and Dis-

tributed Systems, 12(7):758–768.

Topcuoglu, H. (2002). Performance-effective and low-complexity task scheduling for

heterogeneous computing.IEEE Transactions on Parallel and Distributed Sys-

tems, 13(3):260–274.

Wang, Q. and Cheng, K. (1992). A heuristic of scheduling parallel tasks and its anal-

ysis. SIAM Journal on Computing, 21(2):281–294.

Wieczorek, M., Prodan, R., and Fahringer, T. (2005). Scheduling of scientific work-

flows in the askalon grid environment.ACM SIMGMOD Record, 34(3):56–62.

Xhafa, F. and Barolli, L. (2007). Immediate mode schedulingof independent jobs

in computational grids.International Conference on Advanced Information Net-

working and Applications, pages 970–977.

Yang, J., Ahmad, I., and Ghafoor, A. (1993). Estimation of execution times on het-

erogeneous supercomputer architectures.International Conference on Parallel

Processing, 1:219–226.

Yang, T. and Fu, C. (1997). Heuristic algorithms for scheduling iterative task com-

putations on distributed memory machines.IEEE Transactions on Parallel and

Distributed Systems, 8(6):608–622.

Yang, T. and Gerasoulis, A. (1994). Dsc:scheduling parallel tasks on an unbounded

number of processors.IEEE Transactions on Parallel and Distributed Systems,

5(9):951–967.

Yu, J. and Buyya, R. (2005). A taxonomy of workflow managementsystems for grid

computing.Journal of Grid Computing,Springer, 3(3-4):171–200.

Yu, Z. and Shi, W. (2004). A dag-based xcigs algorithm for dependent tasks in grid.

Computational Science and Its Applications ICCSA’04, 3044:158–167.

Bibliography 145

Yu, Z. and Shi, W. (2007). An adaptive rescheduling strategyfor grid workflow appli-

cations.IEEE, Symposium on Parallel and Distributed Processing, pages 1–8.

Zhao, H. and Sakellariou, R. (2004a). An experimental investigation into the rank

function of the heterogeneous earliest finish time scheduling algorithm. LNCS

Euro-Par’03, 2790:189–194.

Zhao, H. and Sakellariou, R. (2004b). A low-cost rescheduling policy for efficient

mapping of workflows on grid systems.Scientific Programming SPR, 12(4):253–

262.

