Using Java for Discrete Event
Simulation

R. McNab and F.W. Howell*
September 30, 1996

Abstract

A discrete event simulation library has been written in the Java
language, based on the SIM++ library for C++. This allows live
simulations to be incorporated into web pages and run remotely. This
paper presents a performance comparison with the equivalent C++
simulator and discusses advantages and disadvantages of Java as a
simulation language.

1 Motivation

The primary purpose of writing simulations in the Java language was to allow
“live diagrams” to be incorporated into documents describing the behaviour
of computer architectures.

Using Java, other people can experiment with a working simulation model
by clicking on a web link. This contrasts with using a traditional simulation
language written in Simula or C4++, where exporting simulation code requires
recompilation and installation on each different machine.

Java incorporates the language features necessary for simulation, notably
objects and threads. Current Java implementations compile down to an
intermediate byte code, which is interpreted. Thus the main disadvantage
of using Java is expected to be longer simulation run times compared with a
native C++ compiler. This penalty is quantified in section 6.

SIM++, a discrete event simulation library for C4++ written by Jade
Simulations Inc [5] has been used for computer architecture simulations as

*Department of Computer Science, The University of Edinburgh, James Clerk Maxwell
Building, Mayfield Road, Edinburgh, EH9 3JZ. Email: {rmcn,fwh}@dcs.ed.ac.uk



part of the HASE project [4, 3] for several years. To allow running simulations
on architectures not supported by Jade (such as Linux and the Cray T3D),
the library was reimplemented using C++ and standard threading libraries,
to produce a new library called HASE++ [1]. HASE++ was used as the
basis for the Java simulator [2].

The most attractive part of the HASE environment is the support of
animated models of simulations. This feature has also been incorporated
into the Java simulator, with the simulation linked in with a graphical model,
displayed using a Web browser such as Netscape.

2 A Brief overview of SIM++/HASE++

A HASE++ simulation is a collection of C++ objects (sim_entities) each of
which runs in parallel in its own lightweight thread. The sim_system object
controls all the threads, advances the simulation time and maintains the
event queues.

Entities communicate and synchronise by passing sim_event objects. The
primitives of the language are:

e sim schedule(sim port port, double delay, int tag) sends a mes-
sage to the entity connected to the port after simulation time delay with
the given tag.

e simwait(sim event &ev) waits for an event sent using sim_schedule.
e sim hold(double t) blocks for t simulation time units.
e sim trace(int level, char* ...) adds a line to the trace file.

This simulation model is well suited to modelling hardware and to mod-
elling parallel software. DEMOS-style process interactions, using resources
and waitqgs have been layered atop this model.

3 The Java version

Java is superficially very similar to C++; the class and expression syntax is
very similar. The Java documentation even states that if a feature hasn’t
been fully explained, it can be assumed to be the same as C4++. The sec-
tions below describe how the differences between the languages affected the
simulator development.



3.1 Interface classes

Separating interface from implementation actually requires more effort in
C++ than it does with C. “Interface classes” are the standard C++ solution
to this problem. These contain an opaque pointer to another class which
defines the representation, so any code using the class depends solely on the
interface and not the representation. This technique was used in HASE++
to reduce the compilation dependencies; it works, but obfuscates the code.

In Java dependencies are handled more neatly. Linking is done during the
initialisation phase of the runtime system, changing the symbolic names to
numeric offsets to preserve speed. The storage layout of objects in memory
is also deferred until runtime, instead of being determined by the compiler.
This means that members can be added to a class without the need for
recompilation of classes which depend on it. Java allows access control of class
members at the library' level. These two points enabled the Java version of
the simulation library to do away with the confusing interface classes, leading
to a clearer object oriented design.

3.2 Collections

The Java language provides no pointer arithmetic; it was thought that this
would be a problem in porting HASE++ to Java, however it proved to be a
minor point. As an example, HASE++ makes extensive use of pointers in
the way it implements the event queues using a dynamic array class, which
was implemented from scratch. The Java version was able to make use of the
Vector class provided in the standard API packages. The Java programmer
can use the arrays built into the language when pointer arithmetic style
indexing is needed.

3.3 Threads support

In C++, threads are the responsibility of the underlying operating system
and are not part of the language. Various threading libraries are available for
different machines; HASE++ uses a class thread with separate implement-
ations for Solaris, Linux, and the Cray T3D threading libraries. Semaphores
and mutexes are also provided by the threading library.

In contrast, Java incorporates threads into the language. A new thread
can be created by deriving an object from class Thread, which provides
methods for all the standard operations such as starting, stopping, and chan-

ging priority.

L4package level” in Java terminology



Where Java threads stand out, however, is in their synchronisation prim-
itives. The runtime system ensures that methods in a class which are marked
as synchronised, do not run concurrently for each instance of that class. Us-
ing this mechanism it is simple to make classes “thread-safe”, i.e. ensure that
they do not show an inconsistent state in a multi-threaded environment. All
of Java’s standard API packages are written to be thread-safe.

HASE++ uses counting semaphores for two purposes: to protect common
data, such as the event queues, from reaching an inconsistent state by being
updated by two threads simultaneously, and to control when the entities in
the simulation run. The Vector class, used in the Java simulation for the
event queues, was already thread-safe, however a counting semaphore class
still had to be written to control the entities.

3.4 Documentation

One of the bugbears of programming is maintaining up to date document-
ation of programs. Java includes a very useful tool, javadoc for helping
with this. It parses a Java program, and automatically generates an html
document describing the public interface to the classes and their methods.
Extra information may be included by using specially formatted comments
in the program source. The tool was used to produce the technical docu-
mentation [6] of the SimJava library. An extract is shown in figure 1.

3.5 I/0

Java supports the I/O required in a simulation for reading data files and
generating trace files using a set of streams classes similar to C++. There
are severe restrictions, however, on the file I/O when running a Java program
within Netscape. Security restrictions mean that reading files may only be
done using a complete URL, and writing files is not possible directly. This
is not really a problem for the small demonstration simulations, where the
tracefile output would be piped straight into another display applet, rather
than to a file.

A workaround to enable file saving from Netscape uses the fact that only
remote classes are subject to the security restrictions. All the file I/O would
be done through a local class which the user previously downloaded and put
in their CLASSPATH for Netscape to find. This is a messy solution which
breaks the built in security mechanisms, and is not really for the novice or
casual browser.



public class Evqueue
extends Vector

This class implements an event queue used by the Sim_system to manage the list of future and deferred
Sim_events. It works like anormal FIFO queue, but during insertion events are kept in order from the
smallest time stamp to the largest. This means the next event to occur will be at the top of the queue.

The current implementation is uses a Vector to store the queue and is inefficient for popping and
inserting elements because the rest of the array has to be moved down one space. A better method would
beto use acircular array.

See Also:
Sim_system

ConsErHeEor ndex

+ Evqueue()
Allocates a new Evqueue object.
» Evqueue(int)
Allocates anew Evqueue object, with an initia capacity.

Method (ndex

» add(Sim_event)
Add anew event to the queue, preserving the temporal order of the eventsin the queue.

Figure 1: An extract from automatically generated technical documentation.

3.6 Statistics

HASE++ handles statistics gathering and random number generation by
using a set of statistics classes. These were straightforward to implement in
Java, using the standard maths library. A surprising find was that it had a
normally distributed random number generator as part of the library.

3.7 Java run-time systems

Sun’s Java Development Kit was used for development; this provides a stan-
dalone applet viewer for running programs. Applets may also be run from
within a Web browser such as Netscape. This introduces an initial “load
time” as the classes are loaded on demand across the network before the
simulation starts, but subsequent runs start instantly.

As it is an interpretted system, Java provides better run time error hand-
ling than C++, including array bounds checking and null pointer exceptions,
both reported with the source file line number where the exception occured.
This makes it a more forgiving development environment than C++.



4 Integration with C++ tools

Figure 2 shows how the Java simulator may be linked with existing C++

based tools.
C++

Java

Tracefile

JavaAnim HASE
Animator

Figure 2: Linking Java simulations with SIM++4 simulations

Because there is a standard trace format, traces produced from a HASE++
simulation may be read into a Java display, and vice-versa. Thus the Java
simulation environment may be used for displaying results from a long run-
ning HASE++ simulation.

All of the HASE++ functions have been ported to Java, and in the large
part their usage is identical. Naming remains the same except for classes,
which follow the Java convention of capitalising the first letter. The major
changes each illustrate a language difference between Java and C++4, and
are detailed below:

e Java does not allow global objects external to classes, so all the mem-
bers of the controlling Sim system class had to be made static and an
initialise() method added.

e HASE++ allows data to be sent between entities, by passing the
sim_schedule() method a (void *) pointer and a data size. In Java,
however, there is no sizeof () operator, so the data must be enclosed
in a class, then passed as a generic Object reference.



e HASE++ uses printf() and varargs.h for its sim_trace() method
to build up traceline strings. Java allows numeric variables to be con-
catenated onto strings using the ‘4’ operator. So the kludgy
sim_trace("There were %d counts in %f msecs", count, time);
becomes the neater
sim_trace("There were "+count+" counts in "+time+" msecs");

Unfortunately porting a HASE++ simulation to Java is not a mechanical
process, in the same way as porting HASE++ itself was not. In the best cases,
however, where the simulation makes little use of C++ language features and
consists mostly of calls to HASE++ functions, porting is simply a matter of
following the syntax changes detailed above.

5 Graphics

The main aim of producing a Java based simulator was to allow inclusion of
live simulation models into web documentation (with the same advantages
over plain diagrams that Science Museum exhibits with buttons have over
static displays).

The current animation facilities are illustrated in figure 3, which shows
an animation of a task farm simulation as it would appear in a page viewed
with a Java enabled web browser. Text boxes and buttons allow the user
to control the simulation and change initial parameters. Entities and ports
have their own icons loaded from GIF files. The icon can be changed to
represent the current state of the entity, and other entity parameters can be
displayed as text. Messages passed between entities are displayed as squares
which travel along the connecting lines, the number attached to the square
is the message tag.

6 Performance

6.1 Simulation

To compare the performance of the Java and C++ versions of the library,
a simple simulation was written in both languages and the execution time
measured. The Java version was run as a stand-alone application, as Nets-
cape applet on a Sun SPARCstation 5 under Solaris, and as a Netscape applet
on a Pentium 133 under Windows NT. The simulation contains two entities
which pass 200 messages between them, a simple example for comparative
purposes. The results are shown in table 1.



Figure 3: Animation of a task farm simulation



‘ Platform ‘ Average execution time over 5 runs

Solaris C++ 1538 ms
Solaris Stand-alone Java 12910 ms
Solaris Netscape 11214 ms
Windows NT Netscape 9341 ms

Table 1: Simulation execution times

The results show that the simulation ran around ten times faster under
C++, and the stand-alone Java and Netscape were roughly equal.

6.2 Threads

Each simulation object runs in its own thread, so the performance of the
underlying threading system is important for large simulations. The Java
runtime system uses the underlying operating system for thread support,
or its own software emulation if the OS does not support threads. The
performance of a threaded Java program running under Solaris is shown in
figure 4. The program launches N concurrent threads, each of which runs a
computation loop. The graph shows the total time for NV threads to complete
divided by the number of threads. Optimal thread performance occurs at 128
threads, and a sensible maximum is 2000, which is consistent with native
Solaris threads.

0.09 T
Thread Performance ——

0.08

0.07

0.06

0.05

0.04

0.03

Total Time / Number of threads (seconds)

0.02 - o

0.01 B

0 L L L
1 10 100 1000
Number of threads

Figure 4: Thread performance



7 Conclusions and Further Work

The portability of Java makes it an attractive simulation language. The
factor-of-ten performance hit compared to the C++ version is the price paid,
so Java is a realistic option for simulations where visualisation is as important
as speed. Java is a very young language, and faster implementations are likely
in the future.

As an accessible environment for displaying simulation results, Java is
much more convenient than using native applications. It allows experiment-
ation with animated simulation models from a standard web browser.

Future plans include implementing more Java modules for displaying
graphs and timing diagrams, and providing 3D models using VRML-2.

References

[1] F.W. Howell. Hase++: a discrete event simulation library for C++.
Available from http://www.dcs.ed.ac.uk/home/fwh/hase++/hase++.html,
Feb 1996.

[2] R. McNab. SimJava: a discrete event simulation library for Java. Avail-
able from http://www.dcs.ed.ac.uk/home/rmcn/simjava, July 1996.

[3] F.W. Howell and R.N. Ibbett. STATE-OF-THE ART IN PERFORM-
ANCE MODELING AND SIMULATION Modeling and Simulation of
Advanced Computer Systems: Techniques, Tools and Tutorials, edited by
Kallol Bagchi, chapter 1:Hierarchical Architecture Simulation Environ-
ment, pages 1-18. Gordon and Breach, 1996.

[4] R.N. Ibbett, P.E. Heywood, and F.W. Howell. Hase: A flexible toolset
for computer architects. The Computer Journal, 38(10):755-764, 1995.

[5] Jade Simulations International Corp., Calgary, Canada. SIM++ User
Manual, 1992.

[6] R. McNab. SimJava package documentation, Available from
http://www.dcs.ed.ac.uk/home/rmcn/hase/doc/Package-hase.html,
July 1996



