

Dynamic Binary Translation: from
Dynamite to Java

ICSA Colloquium, Edinburgh, University
April 10th

Dr. Ian Rogers,
Research Fellow,

The University of Manchester
ian.rogers@manchester.ac.uk

Presentation Outline

 A brief history of binary translation
 The Dynamite project

− A look inside the compiler
 A fresh approach (Java with everything)
 Some tales of sorrow

A Brief History of Binary Translation
 Late 1960s and 1970s assembler to assembler

translators and microprogramming in the
interest of not having to rewrite code and for
fast simulation

 1980s, financial incentive to run other
architectures machine code recognized:

− 1987 HP Object Code Translator – MPE V binaries
to PA-RISC MPE XL

− 1988 AT&T Flashport, static translation of many
architectures (e.g. 680X0, IBM 360, PDP11) to
many (e.g. PowerPC, SPARC, PA-RISC, IA32)

A Brief History of Binary Translation
(continued)

 Early 1990s continued to recognize cost saving
in translating rather than porting using static
translation:

− Accelerator - TNS CISC to TNS/R
− VEST & TIE – VAX VMS to Alpha VMS
− mx & mxr – MIPS to Alpha

 Runtime environments emerging to interpret in
the cases where translations weren't present:

− Mae – Mac emulator for
− Executor & Syn68k

A Brief History of Binary Translation
(continued 2)

 Mid-1990s saw dynamic binary translation
emerging to speed up slow interpreters in
runtime environments:

− SoftWindows, RealPC – run Windows on Mac
− FX!32 – run x86 Windows NT binaries on Alpha

Windows NT
− DAISY – PowerPC to VLIW PowerPC
− Wabi – IA32 Windows to SPARC

A Brief History of Binary Translation
(continued 3)

 The emergence of open source:
− Bochs
− Wine
− QEMU
− PearPC

 2000s, the emergence of virtualization
companies

− VMWare
− Transmeta
− Transitive Technologies

A Brief History of Binary Translation
(continued 4)

 Mid-2000s
− Rosetta shipped with Apple Intel Macs, Lx86

shipped with IBM PowerVM
− Virtualization a hot-topic
− QEMU becomes integrated with the Linux kernel,

QEMU drivers used to virtualize and migrate Linux
− VMWare floats
− Interest in binary translation as part of a bigger

platform
 PearColator, VEELS, JPC – leverage Java
 CLR and LLVM related projects too

A Brief History of Binary Translation
(continued 5)

 In parallel binary translators became an
important tool in simulation:

− atom/shade
 Security analysis of compiled software

− Valgrind
 Instrumentation and profiling

− Dynamo RIO

Dynamite
 Research project started in 1995

− Inspired by the use of Shade for cache simulations
− Cristina Cifuentes (UQBT and UQDBT) visited

Manchester 1995
 Aim to create framework for dynamic binary

translation
 Caught up in dot-com boom, Transitive

launched in 2000

Dynamite - backend
 Originally used Dawson Engler's vcode

− Emit statements like RISC code
− Porting means implementing emit statements for

new architecture
 Dynamite tcode backend designed to handle

x86 as a host architecture

Dynamite – intermediate form
 Basic block based
 Basic blocks identified by an address and lazy

evaluation state
 Translator can assume that values in emulated

registers are those that triggered translation
− Possibility of value specialization optimizations

Dynamite – intermediate form (continued)

 Instructions translated to produce DAGs

Add r1, r1, r2 R1 R2

R1 R2

+

On Exit

On Entry

Load r1, [0x1000]
Load r2, [0x1004]
Add r1, r1, r2

R1 R2

+

On Exit

Load [0x1000] Load [0x1004]

Dynamite – intermediate form (continued 2)

 Instructions emitted by traversing tree for each
register

 When stores were present, their creation order
was recorded and they were generated in
order (could be relaxed in some cases)

 Register allocation was greedy, any spilt
registers were placed in the memory version of
the emulated register

 Howson found that breadth-first traversal of
trees produced slightly better code for VLIW
architectures

Dynamite – adaptive optimization system

Dynamite – group block creation

Control-flow graph Group block

Dynamite – frontends

 In Dynamite a frontend performs the hard work
of maintaining the memory layout, handling
system calls, linking and loading, and
translating instructions

 Other than code placement and constant
propagation, no optimizations are performed
on the IR

 The frontend also performs the main
optimizations using lazy evaluation

Dynamite – lazy evaluation

 Lazy evaluation information is held per basic block
 Used to perform ahead of time liveness analysis
 Most architectures have flags that are set by

instructions but most commonly destroyed by some
subsequent instruction

 On x86 you can have 8, 16, 32 and 64bit views of the
same register, but only 1 view will be active. For
example, there are architectural penalties to writing
an 8bit register and then reading it as a 32bit register.

Lazy evaluation

 On entry record assumptions
− e.g. For x86 start by assuming only 32bit registers

are defined
 Generate code recording changes to assumptions

− e.g. Definition of an 8bit register will mean that
both the 32 and 8bit register are live

 When generating code use recorded assumptions to
guide which instructions to generate

− e.g. If 8 and 32bit version of a register are live,
combine them prior to use

 Make exit assumptions available for subsequent code

Lazy evaluation (continued)

 For flags, rather than set the flags make copies
of the operands that define and record the
instruction in the lazy state

 When generating a branch, or predicated
instruction, use the lazy state to

− If the flag isn't lazy - directly generate code to
access the flag

− If the flag is lazy then generate the setting
instruction and branch together

Lazy evaluation (continued 2)

 Lazy evaluation wins because most flag values
are never read or are killed by subsequent
instructions

 Lazy evaluation loses because it increases
register pressure, peels loops, causes code
bloat

Jamaica Project
 Parallel hardware with lightweight threading
 Parallelizing compiler, small threads created

that exploited lightweight infrastructure
 Cost effective to run 100s of instructions

runnable in parallel

Jamaica Systems Software Overview

Legacy Emulation Layer - PearColator
 Performance of code generated by JVM

optimizing compiler is much better than
Dynamite, at least:

− Instruction selection
− Register allocation

 Why not emit Java bytecodes?

Why not emit Java bytecodes?
 QEMU translates code by memcpy-ing regions

of GCC compiled code into consecutive
memory addresses

 Performing the same for Java would be more
portable and enable the creation of single code
for both interpretation and compilation

 But...

Why not emit Java bytecodes? (continued)
Overall execution time for different example traces

0,00

5,00

10,00

15,00

20,00

25,00

30,00

5.000 50.000 500.000

Loop iterations

Ex
ce

ut
io

n
itm

e
)s(

Current Structure,
128 instr./loop
New Structure,
128 instr./loop

Current Structure,
256 instr./loop
New Structure,
256 instr./loop

40%40%

150%150%

128 256 128 256 128 256

The overhead in executing more loop iterations is small
100 times more loops equals 40% slower

The overhead in translating twice as much code using bytecodes is 150% slower,
directly generating IR incurs a very small cost

PearColator

PearColator Overview (continued)

The Jikes RVM
 Overview of the adaptive compilation system:

The baseline compiler
 Used to compile code the first time it’s invoked
 Very simple code generation:

iload_0

iload_1

iadd

istore_0

Load t0, [locals + 0]

Store [stack+0], t0

Load t0, [locals + 4]

Store [stack+4], t0

Load t0, [stack+0]

Load t1, [stack+4]

Add t0, t0, t1

Store [stack+0], t0

Load t0, [stack+0]

Store [locals + 0], t0

The baseline compiler
 Pros:

● Easy to port – just write emit code for each
bytecode

● Minimal work needed to port runtime and garbage
collector

● Fast compilation rate
 Cons:

● Produces slow code

The boot image
 Hijack the view of memory (mapping of objects to

addresses)
 Compile list of primordial classes
 Write view of memory to disk (the boot image)
 The boot image runner loads the disk image

and branches into the code block for VM.boot

The boot image
 Problems:

● Difference of views between:
● Jikes RVM
● Classpath
● Bootstrap JVM

● Fix by writing null to some fields
● Fix other fields by using “Oracle” to lookup field

values
● Jikes RVM runtime needs to keep pace with

Classpath

The runtime
 M-to-N threading

● Thread yields are GC points
● Native code can deadlock the VM
● Refactored thread system means native threading

implementation can be plugged in!
 JNI written in Java with knowledge of C layout
 Classpath interface written in Java

The optimizing compiler
 Structured from compiler phases based on HIR, LIR

and MIR phases from Muchnick
 IR object holds instructions in linked lists in a control

flow graph
 Instructions are an object with:

● One operator
● Variable number of use operands
● Variable number of def operands
● Support for def/use operands

 Some operands and operators are virtual

The optimizing compiler
 HIR:

● Infinite registers
● Operators correspond to bytecodes
● SSA phase performed

 LIR:
● Load/store operators
● Java specific operators expanded
● GC barrier operators
● SSA phase performed

 MIR:
● Fixed number of registers
● Machine operators

The optimizing compiler
 Factored control graph:

● Don’t terminate blocks on Potentially Exceptioning
Instructions (PEIs)

● Bound check
● Null check

● Checks define guards which are used by:
● Putfield, getfield, array load/store, invokevirtual

● Eliminating guards requires propagation of use

The optimizing compiler
 Java – can we capture and benefit from strong type

information?
 Extended Array SSA:

● Single assignment
● Array – Fortran style - a float and an int array can’t alias
● Extended – different fields and different objects can’t alias

 Phi operator – for registers, heaps and exceptions
 Pi operator – define points where knowledge of a

variable is exposed. E.g. A = new int[100], later uses
of A can know the array length is 100 (ABCD)

The optimizing compiler
 HIR: Simplification, tail recursion elimination, estimate

execution frequencies, loop unrolling, branch
optimizations, (simple) escape analysis, local copy
and constant propagation, local common sub-
expression elimination, local expression folding

 SSA in HIR: load/store elimination, redundant branch
elimination, global constant propagation, loop
versioning, expression folding

 AOS framework

The optimizing compiler
 LIR: Simplification, estimate execution frequencies,

basic block reordering, branch optimizations, (simple)
escape analysis, local copy and constant propagation,
local common sub-expression elimination, local
expression folding

 SSA in LIR: global code placement, live range splitting

 AOS framework

The optimizing compiler
 MIR: instruction selection, register allocation,

scheduling, simplification, branch optimizations

 Fix-ups for runtime

Instruction Selection
 Bottom-Up Rewrite System
 Consider different coverings over DAG
 Choose least cost cover

R1

+

Load [0x1000] Load [0x1004]

Speculative Optimisations
 Often in a JVM there’s potentially not a

complete picture, in particular for dynamic class
loading

 On-stack replacement allows optimisation to
proceed with a get out clause

 On-stack replacement is a virtual Jikes RVM
instruction

Applications of on-stack replacement
 Safe invalidation for speculative optimisation

● Class hierarchy-based inlining
● Deferred compilation

● Don’t compile uncommon cases
● Improve dataflow optimization and improve compile time

 Debug optimised code via dynamic deoptimisaton
● At break-point, deoptimize activation to recover program

state
 Runtime optimization of long-running activities

● Promote long-running loops to higher optimisation levels

PearColator Overview (continued 2)

Profiling

Profiling (continued)
 Generate information on indirect branch

targets
 Use branch and link instructions to

approximate function boundaries
 Use profile information to build up accurate

trace for a function
 For hot functions consider inlining

Trace formation
 Traces start at beginning of a function
 Compilation is concurrent with interpretation of

code
 Switch to trace execution on function calls

− on-stack replacement not yet implemented
 Lazy information recorded per instruction in the

trace, bigger basic blocks formed by merging
instructions after initial translation

Decoders

Execution Models

Staged Execution Threshold

Lazy vs Immediate Evaluation

Memory Models

PearColator

Where we are
 ARM, x86 and PowerPC decoders
 Generic and shared OS emulation library

− Insufficient to run SpecCPU – needs support
for exec, pipe...

 No hardware emulation, a la JPC or PearPC
 No direct to memory memory-model

Tales of sorrow
 Linux isn't the same across architectures
 On PowerPC brk on Linux 2.4 maps from /dev/

zero, whilst on x86 it maps using mmap
 Calloc routine in glibc took advantage of the

fact that on PowerPC new pages allocated with
brk would be zeroed

 On x86 new pages weren't zeroed with
disastrous effect

Tales of sorrow
 Mach is message passing and pointers can be

passed in messages
 Different servers are needed for different

pointer sizes, with binary translation also for
different byte sex

 Possibility of having 4 concurrent font servers
running on OS/X

Tales of sorrow
 Some libraries generate code on the stack to

perform certain operations, this can create a lot
of apparently self-modifying code

Tales of sorrow
 Most binary translators steal some address

space from the emulated binary
 This causes a security problem as the subject

application can modify dynamically generated
code

 (PearColator doesn't suffer from this problem)

Tales of sorrow
 Linux isn't the same across architectures
 On PowerPC brk on Linux 2.4 maps from /dev/

zero, whilst on x86 it maps using mmap
 Calloc routine in glibc took advantage of the

fact that on PowerPC new pages allocated with
brk would be zeroed

 On x86 new pages weren't zeroed with
disastrous effect

Tales of sorrow
 Floating point precision can be the key to font

rendering and good looking applications
 Many architectures have obscure floating point

modes
− Intel x87 80bit
− PowerPC fmacs 66bit

Tales of sorrow
 Debugging can be hard due to “random”

values in code
− Genuine random numbers
− Date and time values

Thanks and…

any questions?

