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Outline

e Overview of research activities focusing on
- Automated low-power system-level design flows
-~ Fault tolerant and low-power embedded systems

e Outline of other current projects
e Concluding remarks and future problems



Power Minimization (background)

Design Levels

‘ System -

Behavioural (transformations, multiple Vi)

Architecture (clock gating, power gating)

uononpai Jamod onels

Logic (pass-transistor)

O
<
>J
Q
3.
®)
O
o}
=
®
=
=
®
o
c
®)
=
o
>

Gate (min-size transistors, topology)

Technology (strained silicon, dual Vt process)

Dynamic power=0.5 V2, F, C, E,

Leakage power (sub-threshold, gate oxide)



Software Power Optimisation (background)

e Individual instructions: fundamental unit of SW,
similar to gates in HW

e Program transformation techniques aims to reduce

— use of instructions (MOV, JUMP,..) that consume large
amount of supply current

— memory access and unnecessary instruction fetching
instruction involves memory consume energy >
instructions involve registers

e Operating system techniques

- Identify program regions where processor can be slowed
down to reduce dynamic power through V/F scaling

— Shut down unused parts of system to reduce leakage
power



Embedded Computing Systems, SoC, Multicore,..

Display &
Keyboard Speaker Mic
/0 \DAC! 1ADC,
DVS-Cont| g ] (g] ca )
CPU |E £[FPGA
= " £| C5
MEM =
=E
(DVS-Cont 2 O 5 DSP
©
5| ASIC |5 =
IS MEM
\C2 |C3|™ ol

int main(int argc, char **argv) ({
Build Interface();
EventTrigger () ;
while (!end bs(&bs)) {
sync = seek sync(&bs, SYNC WORD) ;

decode info (&bs, &fr ps);

void EventTrigger () {
InitTriggerControl () ;
while (Event) ReadEvent () ;
switch (Event) {
case O0: ... ... ...
case 1: ... ... ...

}

System design requires optimisation in both hardware

(computation units, memory, communication) and

software (application and system)



System-Level Design Flow*

-« "= = - -

01010001001
01001000101

0010010100 SW
//Q//(L

01010001001
01010100101

*M. Schmitz, B. Al-Hashimi, P. Eles, “System level design techniques for energy embedded systems”, Kluwer Publishers, 2004



Design Flow: Specification

Capturing system functionality using conceptual models

Abstract Graph High-Level Languages:
Representation 6.g.: - SystemC

e.g.:-Finite State Machine - VHDL / Verilog
-Petri Net -C/C++/JAVA

-Task Graph

for (i=0;i<x;i++) {
af[i] += b[1i];
}




Design Flow: Co-synthesis

User driven
Outer loop

inner loop
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Design Flow: Co-Synthesis

Identify the “most” suitable system architecture
sufficient performance to satisfy timing constraint, at the same time
cost and energy reduced to minimum

Application
Mapping:

Architecture Activity Energy
Allocation: Scheduling: Management:

CPU

CPU

-Task execution order to meet timing constraint
- not trivial!

- Appropriate components
- HW > performance < energy SW -Which tasks done in HW or SW
- size of task (coarse, fine)



Tasks Profiling

e Partitioning and Scheduling require tasks
execution time and energy cost

— In HW (HDL model of task)

e Execution time through simulation

e Energy estimation through power analysis on
synthesised designs

- In SW (coding of task)
e Execution time through instruction-set simulator

e Energy estimation= average power (pre
characterised)*no. clock cycles*frequency

Commercial and academics timing and power estimation tools exist



Design Flow: HW/SW Synthesis

A h < Transformation of system

architecture into physical
implementation




Design Flow: HW/SW Synthesis

Co-Synthesis

HW Synthesis: SW Synthesis:
(ASICs & FPGAs) (GPPs & ASIPs)

Behavioural Spec. High-level Language

High-level Synthesis Ge-sllElel

Co-Verification

RTL model Assembler code

Logic Synthesis

Gate-level model Machine code

Layout Synthesis




Energy Management

e Dynamic Power Management
-~ Idle components shutdown

e Dynamic Voltage and Frequency Scaling

- Non-uniform workload, MPEG order of magnitude >MP3

- Introduce slack times (deadline-finish time) and used to reduce
processor performance to save energy

- Adapt processor performance through V/F scaling

0.7V.60mW, 150MHz @

1.3V,450mW,600MHz

1.6V,900mW,800MHz @



Energy Management: DVS-Processor
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Design Flow: Co-synthesis
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Outer loop

inner loop

-Mapping and Scheduling NP-hard problems
- Heuristic methods employed



DVS Example (Scheduling)
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Task graph Target architecture and mapping
Task Exe. Time (ms) Power (mW) Mapped to
70 0.3 10 PE1
71 0.3 20 PE1
12 0.4 15 PE1
3 0.1 40 PE2
4 0.4 70 PEO
) 0.2 90 PEO
6 0.3 20 PE2

Task properties (communication cost=0)



DVS Example (cont..)

i E=71pJ P E=65.6uJ
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can further optimise the execution order

DVS-Schedule Optimisation

e TO increase the possible energy savings we

(mW)
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*Schmitz, M. T., Al-Hashimi, B. M. Eles, P. lterative schedule optimisation for voltage scalable distributed embedded systems.
ACM Transactions on Embedded Computing Systems 3(1):pp. 1-36, Feb.04.
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Design Flow: Co-synthesis

User driven
Outer loop

inner loop
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Multi-Mode Embedded Systems

e Emerging embedded systems work across a set of different interacting applications
e Smart Phone consisting of three applications:

- GSM Phone, MP3 Player, Digital Camera (JPEG compression/decompression)
e Specification model captures both mode interaction and functionality
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*Schmitz, M. T., Al-Hashimi, B. M. , Eles, P. Co-Synthesis of Energy-Efficient Multi-Mode Embedded Systems with Consideration of Mode Execution Probabilities.
IEEE TCAD, 24(2),pp.153-170, Feb.05




Mode Execution Probabilities

Typical mode activation profile of a mobile phone:

[Amin

M Search [ JRLC Ml Calling
Execution Prob.: 2% 88% 10%

4h

Depending on the application, the time spend in a

certain operational mode is user-typical!



Multi-Mode Example

PE1 (SW) PE2 (HW)
01 (0))
frasks i Sancel Y% Wit | | Yexel A% \dyin! area
type | time | energy | time | energy | (mm?)
(ms) (m3J) (ms) (mJ)

A 20 10 2 0.010 2.40
B 28 14 2.2 0.012 3.00
C 32 16 1.6 0.023 2.75
v.-0.1] [¥,=009 D 26 13 3.1 |\ 0i047 | 2,45
E 30 15 1.8 0.015 2.10

F 24 14 2.2 032 2.
Application specified 0.03 80

by two interacting modes



Multi-Mode Example (Cont..)

Mode: 01 (0)) Mode: 0, 0,

Mapping | 71| 2] T3] t4] 5[ T6 Mapping | T1] T2| T3] 14| 75| 16
String (PE):[ 1] 11 21 11 2] 1 String (PEY 1 1 F1L1] 21 2

CL1
CL1

_ cl7TCPEe ~ PE2) o
¥,=0.1 ¥=0.9 ‘[@ o J ‘[@ ]

E F
Application specified Optimised without Optimised with
by two interacting modes mode consideration mode consideration

26.72mJ 15.74mJ, 41%



Leakage power

e Reduced using adaptive body biasing (ABB)
by increasing the processor threshold
voltage and decreasing its frequency

e Simultaneous reduction of dynamic and
leakage power in MPSoC*

e Considering the overheads (energy, time)
imposed by changing voltage levels

*Andrei, Eles, Peng, Schmitz, Al-Hashimi, “Energy optimization of multiprocessor systems on chip by voltage selection”, IEEE TVLSI, March 2007
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Smart Phone: Case Study

e Smart Phone Specification
— GSM Phone
— MP3 player
— Digital Camera

e System price: < $120

e Power consumption: < 1.6mW



Area Penalty

Smart Phone: Case Study (cont..)
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Multi-Mode Embedded Systems (cont..)

Network lost
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Schmitz, M. T., Al-Hashimi, B. M. , Eles, P. Co-Synthesis of Energy-Efficient Multi-Mode Embedded Systems with Consideration of Mode Execution Probabilities.
IEEE TCAD, 24(2),pp.153-170, Feb.05




Case Study (cont..)
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Average Power (mW)
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Smart Phone: Case Study (cont..)

oo -

e Specification consists of

— 3 applications 8 operational modes,
w/o, 100/8% prob.

- 5—88 tasks and 0—137 communications
e Finding the “"best" solution took less than 8 hours




Reliable and Energy Efficient
Embedded Computing Systems

Ejlali, Schmitz, Al-Hashimi, Miremadi, Rosinger, “ Combined Time and Information Redundancy for SEU-Tolerance in Energy-Efficient
Real-Time Systems”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(4), pp.323-335, April 2006

University
of Southampton

ICSA, School of Informatics, University of Edinburgh, Nov.15-2007




Background

e How to design embedded computing systems
that can tolerate faults (transient, soft, SEU,
bit-flip) is becoming important

- Demand from industry (high reliability even in
commodity microprocessors)

— Technology scaling and power management are
making designs more sensitive to faults (SEU
sensitivity increases by 1-2 order of magnitude
as Vdd reduces by 1V)

e Additional dimension to an already complex
design problem, need to be done carefully?



Fault Tolerance

e Numerous techniques exists in Fault Tolerant
Computing

— Can they be applied directly to embedded
computing systems?

— Which FT technique or combination of
techniques best match to specific requirements ?

e Same principles but different constraints

— consume as little power as possible

— cost (silicon area, execution time) as little as
possible

— Little or no performance degradation



Fault-Tolerance: Time Redundancy

e Rollback recovery (re-execution of faulty tasks)

SeEu SEUs  Fault sEU Fault

detect detect

deadline

\/

Original Recovery Recovery
iexecution Execution 1 Execution 2

0 1_1 1 Reg

1 1‘ 0 Reg.2

1 1 1 1 Reg3




Fault-Tolerance: Time Redundancy

e Rollback recovery (re-execution of faulty tasks)

SEU SEUs

slack

deadline

\/

Original Recovery Recovery
execution Execution 1 Execution 2

e Time reserved for rollback-recoveries
affects fault-tolerance and energy saving




Dynamic Voltage Scaling (DVS)

e Energy depends quadratic on frequency/voltage

SEU SEUs

P

deadline

\/

Original Recovery Recovery
execution Execution 1 Execution 2

Task executions
can be extended



Fault tolerance/Energy Trade-off

SEU SEUs SEU

~o
| deadline

Original Recovery Recovery
execution Execution 1 Execution 2



Time Redundancy FT & Energy Management
Conflict

e Competing for the same resource
- Fault-tolerance requires slack time
- Dynamic voltage scaling requires slack time

Carefully trading off between fault-tolerance

and energy management Is necessary

e Our approach for reliable & energy efficient systems

- SEU (common), solve with information redundancy
(error correction codes) and save slack time

- Multiple SEU (infrequent), solve with time
redundancy (error detection + retransmission)
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Information Redundancy
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Information Redundancy
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Energy efficient FT

e FT through rollback-recoveries and information
redundancy (depending on fault occurrence)

corr.

O SEUs corr.

Fault SEU
detect

slack

deadline

\/

Original Recovery
execution Execution 1



Energy efficient FT

e FT through rollback-recoveries and
information redundancy
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Key observations

e Using various ITC benchmarks synthesized and
analysed (hardware, energy) using EDA tools and

different fault rates

— It is possible to improve embedded computing systems
reliability to transient faults without compromising
energy saving through DVS

e Employ information redundancy for SEU and time
redundancy for multiple SEU

e Adaptive Body Bias used to reduce leakage power
also increases SEU rate by up to 36%



Network-on-Chip

e Future embedded computing systems will contain
hundred’s of processors and memories blocks

e Bus communication may prove to be system
bottleneck because

— shared bandwidth and not compatible with the
required Gbits/s bandwidth requirements

— limited opportunities for parallelism and not
compatible with the highly parallel system
architectures

- not scalable

e Network-on-chip attempts to solve the above
Issues




Network-on-Chip




HW/SW Co-Design with NoC Platform

e Scheduling and mapping optimisation to include
not only computation cost but also variable
communication cost (power, latency, reliability,..)
as there are a number of possible routing options
iIn NoC

e NIRGAM SystemC cycle accurate simulator, analyse
NoC in terms of routing algorithms and applications
on various topologies.

http://nirgam.ecs.soton.ac.uk/



Final Thoughts

e How to develop effective energy-efficient system-
level automated design flows is reasonably well
understood as demonstrated by the recent
availability of SL-EDA tools

- Extending SL flows to NoC platform is the next step?

e Low power and reliability are 2 key objectives when
designing future embedded computing systems
— Selecting the appropriate FT techniques fit for the
application is important but not trivial
— Developing application specific and *light weight* FT
(employed only where needed) may be necessary to gain
acceptance



System-on-Chip:
Next Generation Electronics




