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� Overview of research activities focusing on 

0 Automated low-power system-level design flows 

0 Fault tolerant and low-power embedded systems 

� Outline of other current projects 

� Concluding remarks and future problems 
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Power Minimization (background) Power Minimization (background) 

System

Behavioural (transformations, multiple Vt)

Architecture (clock gating, power gating)

Logic (pass-transistor)

Gate (min-size transistors, topology)

Technology (strained silicon, dual Vt process)

Design LevelsDesign Levels
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Software Power Optimisation (background)Software Power Optimisation (background)

� Individual instructions: fundamental unit of SW, 
similar to gates in HW

� Program transformation techniques aims to reduce 

0 use of instructions (MOV, JUMP,..) that consume large 
amount of supply current

0 memory access and unnecessary instruction fetching 
instruction involves memory consume energy > 
instructions involve registers

� Operating system techniques

0 Identify program regions where processor can be slowed 
down to reduce dynamic power through V/F scaling

0 Shut down unused parts of system to reduce leakage 
power
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Embedded Computing Systems, Embedded Computing Systems, SoCSoC, , MulticoreMulticore,..,..

... ... ... ...

int main(int argc, char **argv) {
Build_Interface();
EventTrigger();
while (!end_bs(&bs)) {

... ... ... ... ... ... ...

decode_info(&bs, &fr_ps);
}

}

sync = seek_sync(&bs, SYNC_WORD);

... ... ... ...

void EventTrigger() {
InitTriggerControl();
while (Event) ReadEvent();
switch (Event) {

case 0: ... ... ...
case 1: ... ... ...

}

}

... ... ... ... ...

…

…

System design requires optimisation in both hardware 

(computation units, memory, communication) and 

software (application and system)
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SystemSystem--Level Design Flow* Level Design Flow* 

*M. Schmitz, B. Al*M. Schmitz, B. Al--HashimiHashimi, P. , P. ElesEles, , ““System level design techniques for energy embedded systemsSystem level design techniques for energy embedded systems””, , KluwerKluwer Publishers, 2004Publishers, 2004
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Design Flow: SpecificationDesign Flow: Specification

Abstract Graph 

Representation:

e.g.:-Finite State Machine

-Petri Net

-Task Graph

High-Level Languages:

e.g.: - SystemC

- VHDL / Verilog

- C / C++ / JAVA

for (i=0;i<x;i++) {

a[i] += b[i];

}

Capturing system functionality using conceptual modelsCapturing system functionality using conceptual models



Design Flow: CoDesign Flow: Co--synthesis synthesis 
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Design Flow: CoDesign Flow: Co--SynthesisSynthesis

Architecture 

Allocation:

CPU

CPU

ASICB
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s

Application 

Mapping:

CPU
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s

Activity 

Scheduling:

t

CPU1

ASIC

CPU2

Energy 

Management:

t

CPU1

ASIC

CPU2

Identify the Identify the ““mostmost”” suitable system architecturesuitable system architecture
sufficient performance to satisfy timing constraint, at the samesufficient performance to satisfy timing constraint, at the same timetime

cost and energy reduced to minimumcost and energy reduced to minimum

--Task execution order to meet timing constraint Task execution order to meet timing constraint 

-- not trivial! not trivial! 

--Which tasks done in HW or SWWhich tasks done in HW or SW

-- size of task (coarse, fine)size of task (coarse, fine)

-- Appropriate componentsAppropriate components

-- HW > performance < energy SW HW > performance < energy SW 



Tasks ProfilingTasks Profiling

� Partitioning and Scheduling require tasks 
execution time and energy cost 

0 In HW (HDL model of task)

• Execution time through simulation  

• Energy estimation through power analysis on 
synthesised designs  

0 In SW (coding of task)

• Execution time through instruction-set simulator

• Energy estimation= average power (pre 
characterised)*no. clock cycles*frequency  

� Partitioning and Scheduling require tasks 
execution time and energy cost 

0 In HW (HDL model of task)

• Execution time through simulation  

• Energy estimation through power analysis on 
synthesised designs  

0 In SW (coding of task)

• Execution time through instruction-set simulator

• Energy estimation= average power (pre 
characterised)*no. clock cycles*frequency  

Commercial and academics timing and power estimation tools existCommercial and academics timing and power estimation tools exist



Design Flow: HW/SW SynthesisDesign Flow: HW/SW Synthesis
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Design Flow: HW/SW SynthesisDesign Flow: HW/SW Synthesis

Co-Synthesis

HW Synthesis:

(ASICs & FPGAs)

High-level Synthesis

RTL model

Logic Synthesis

Gate-level model

Layout Synthesis

Behavioural Spec.

SW Synthesis:

(GPPs & ASIPs)

Compiler

Assembler code

Assembler

Machine code

High-level Language

Co-Simulation

Co-Verification



Energy ManagementEnergy Management

� Dynamic Power Management

0 Idle components shutdown

� Dynamic Voltage and Frequency Scaling

- Non-uniform workload, MPEG order of magnitude >MP3 

- Introduce slack times (deadline-finish time) and used to reduce 
processor performance to save energy

- Adapt processor performance through V/F scaling

� Dynamic Power Management

0 Idle components shutdown

� Dynamic Voltage and Frequency Scaling

- Non-uniform workload, MPEG order of magnitude >MP3 

- Introduce slack times (deadline-finish time) and used to reduce 
processor performance to save energy

- Adapt processor performance through V/F scaling

Task1

Task2

Task3

0.7V,60mW,150MHz

1.3V,450mW,600MHz

1.6V,900mW,800MHz



Energy Management: DVSEnergy Management: DVS--ProcessorProcessor
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Design Flow: CoDesign Flow: Co--synthesis synthesis 
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--Mapping and Scheduling NPMapping and Scheduling NP--hard problemshard problems

-- Heuristic methods employedHeuristic methods employed



DVS Example (Scheduling)DVS Example (Scheduling)
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DVS Example (cont..) DVS Example (cont..) 
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DVSDVS--Schedule OptimisationSchedule Optimisation

� To increase the possible energy savings we 
can further optimise the execution order

� To increase the possible energy savings we 
can further optimise the execution order
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*Schmitz, M. T., Al-Hashimi, B. M. Eles, P. Iterative schedule optimisation for voltage scalable distributed embedded systems.

ACM Transactions on Embedded Computing Systems 3(1):pp. 1-36, Feb.04. 
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MultiMulti--Mode Embedded SystemsMode Embedded Systems
� Emerging embedded systems work across a set of different interacting applications

� Smart Phone consisting of three applications:

0 GSM Phone, MP3 Player, Digital Camera (JPEG compression/decompression)

� Specification model captures both mode interaction and functionality
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*Schmitz, M. T., Al-Hashimi, B. M. , Eles, P. Co-Synthesis of Energy-Efficient Multi-Mode Embedded Systems with Consideration of Mode Execution Probabilities. 

IEEE TCAD, 24(2),pp.153-170, Feb.05



Mode Execution ProbabilitiesMode Execution Probabilities

Typical mode activation profile of a mobile phone:Typical mode activation profile of a mobile phone:

24h
Search RLC Calling

2% 88% 10%Execution Prob.:

Depending on the application, the time spend in a 

certain operational mode is user-typical!



MultiMulti--Mode ExampleMode Example
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MultiMulti--Mode Example (Cont..) Mode Example (Cont..) 

Ψ =0.11 Ψ =0.92

η1=A

η
2
=B

η3=C

η4=D

O1 O2

τ3

τ2

τ1

η6=Fη5=E

τ4

6τ5 τ

Application specified

by two interacting modes

τ1 τ2 τ 3 τ4 τ5 τ6

O2O1

τ1 τ2 τ3 τ4 τ5 τ6

O2O1

τ1

τ2

τ3

A

B

C

D

E

F

τ4

τ6

τ5

Optimised without

mode consideration

τ1

τ 4

τ2

τ3

τ6τ5

A

C

B

D

E

F

Optimised with

mode consideration

a
re
a
=
6

PE1

Mapping
String (PE):

Mapping
String (PE):

a
re
a
=
6

PE1

PE2 PE2

1 1 1 1 2 21 1 2 1 2 1

C
L
1

C
L
1

Mode:Mode:

26.72mJ 15.74mJ, 41%



Leakage powerLeakage power

� Reduced using adaptive body biasing (ABB) 
by increasing the processor threshold 
voltage and decreasing its frequency 

� Simultaneous reduction of dynamic and 
leakage power in MPSoC*

� Considering the overheads (energy, time) 
imposed by changing voltage levels

� Reduced using adaptive body biasing (ABB) 
by increasing the processor threshold 
voltage and decreasing its frequency 

� Simultaneous reduction of dynamic and 
leakage power in MPSoC*

� Considering the overheads (energy, time) 
imposed by changing voltage levels

*Andrei, *Andrei, ElesEles, , PengPeng, Schmitz, Al, Schmitz, Al--HashimiHashimi, , ““Energy optimization of multiprocessor systems on chip by voltageEnergy optimization of multiprocessor systems on chip by voltage selectionselection””, IEEE TVLSI, March 2007, IEEE TVLSI, March 2007



LOPOCOS LOPOCOS 

� Explore different system 
architectures

0 Optimisation targets

• Energy-efficiency

• Cost
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architectures
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Smart Phone: Case Study Smart Phone: Case Study 

� Smart Phone Specification

0 GSM Phone

0 MP3 player

0 Digital Camera

� System price: < $120

� Power consumption: < 1.6mW

� Smart Phone Specification
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� Power consumption: < 1.6mW



Smart Phone: Case Study (cont..)Smart Phone: Case Study (cont..)
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MultiMulti--Mode Embedded Systems (cont..)Mode Embedded Systems (cont..)
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Schmitz, M. T., Al-Hashimi, B. M. , Eles, P. Co-Synthesis of Energy-Efficient Multi-Mode Embedded Systems with Consideration of Mode Execution Probabilities. 
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Smart Phone: Case Study (cont..)Smart Phone: Case Study (cont..)
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LOPOCOS Synthesis ResultsLOPOCOS Synthesis Results

� Influence of the user behaviour� Influence of the user behaviour

Real-usage activation times
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Smart Phone: Case Study (cont..)Smart Phone: Case Study (cont..)
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Background Background 

� How to design embedded computing systems 
that can tolerate faults (transient, soft, SEU, 
bit-flip) is becoming important 

0 Demand from industry (high reliability even in 
commodity microprocessors) 

0 Technology scaling and power management are 
making designs more sensitive to faults (SEU 
sensitivity increases by 1-2 order of magnitude 
as Vdd reduces by 1V) 

� Additional dimension to an already complex 
design problem, need to be done carefully?
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Fault Tolerance Fault Tolerance 

� Numerous techniques exists in Fault Tolerant 
Computing  

0 Can they be applied directly to embedded 
computing systems?

0 Which FT technique or combination of 
techniques best match to specific requirements ?   

� Same principles but different constraints

0 consume as little power as possible

0 cost (silicon area, execution time) as little as 
possible 

0 Little or no performance degradation  

� Numerous techniques exists in Fault Tolerant 
Computing  

0 Can they be applied directly to embedded 
computing systems?

0 Which FT technique or combination of 
techniques best match to specific requirements ?   

� Same principles but different constraints

0 consume as little power as possible

0 cost (silicon area, execution time) as little as 
possible 

0 Little or no performance degradation  



FaultFault--Tolerance: Time RedundancyTolerance: Time Redundancy

� Rollback recovery (re-execution of faulty tasks)� Rollback recovery (re-execution of faulty tasks)
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FaultFault--Tolerance: Time RedundancyTolerance: Time Redundancy

� Rollback recovery (re-execution of faulty tasks)� Rollback recovery (re-execution of faulty tasks)
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� Time reserved for rollback-recoveries 
affects fault-tolerance and energy saving



Dynamic Voltage Scaling (DVS)Dynamic Voltage Scaling (DVS)

� Energy depends quadratic on frequency/voltage� Energy depends quadratic on frequency/voltage
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Fault tolerance/Energy TradeFault tolerance/Energy Trade--offoff
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Time Redundancy FT & Energy Management Time Redundancy FT & Energy Management 

ConflictConflict

� Competing for the same resource 

0Fault-tolerance requires slack time

0Dynamic voltage scaling requires slack time

� Competing for the same resource 
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0Dynamic voltage scaling requires slack time

Carefully trading off between fault-tolerance 

and energy management is necessary

� Our approach for reliable & energy efficient  systems

- SEU (common), solve with information redundancy 
(error correction codes) and save slack time

- Multiple SEU (infrequent), solve with time 
redundancy (error detection + retransmission)
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Energy efficient FTEnergy efficient FT

� FT through rollback-recoveries and information 
redundancy (depending on fault occurrence) 
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� FT through rollback-recoveries and 
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Key observations Key observations 

� Using various ITC benchmarks synthesized and 
analysed (hardware, energy) using EDA tools and 

different fault rates

0It is possible to improve embedded computing systems 
reliability to transient faults without compromising 
energy saving through DVS 

� Employ information redundancy for SEU and time 
redundancy for multiple SEU 

� Adaptive Body Bias used to reduce leakage power 
also increases SEU rate by up to 36%
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NetworkNetwork--onon--ChipChip

� Future embedded computing systems will contain 
hundred’s of processors and memories blocks  

� Bus communication may prove to be system 
bottleneck because 

0 shared bandwidth and not compatible with the 
required Gbits/s bandwidth requirements

0 limited opportunities for parallelism and not 
compatible with the highly parallel system 
architectures

0 not scalable  

� Network-on-chip attempts to solve the above 
issues  
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HW/SW CoHW/SW Co--Design with Design with NoCNoC Platform Platform 

� Scheduling and mapping optimisation to include 
not only computation cost but also variable 
communication cost (power, latency, reliability,..) 
as there are a number of possible routing options 
in NoC

� NIRGAM SystemC cycle accurate simulator, analyse 
NoC in terms of routing algorithms and applications 
on various topologies.  

http://nirgam.ecs.soton.ac.uk/

� Scheduling and mapping optimisation to include 
not only computation cost but also variable 
communication cost (power, latency, reliability,..) 
as there are a number of possible routing options 
in NoC

� NIRGAM SystemC cycle accurate simulator, analyse 
NoC in terms of routing algorithms and applications 
on various topologies.  

http://nirgam.ecs.soton.ac.uk/



Final Thoughts Final Thoughts 

� How to develop effective energy-efficient system-
level automated design flows is reasonably well 
understood as demonstrated by the recent 
availability of SL-EDA tools

0 Extending SL flows to NoC platform is the next step?

� Low power and reliability are 2 key objectives when 
designing future embedded computing systems  

0 Selecting the appropriate FT techniques fit for the 
application is important but not trivial 

0 Developing application specific and *light weight* FT 
(employed only where needed) may be necessary to gain 
acceptance  
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